Hierarchical Knowledge Structure Applied to Image Analyzing System - Possibilities of Practical Usage

  • Krzysztof Wójcik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6908)


This article describes a proposition and first examples of using inductive learning methods in building of the image understanding system with the hierarchical structure of knowledge. This system may be utilized in various task of automatic image interpretation, classification and image enhancement. The paper points to the essential problems of the whole method: the constructing an effective algorithm of conceptual clustering and creation of the method of knowledge evaluation. Some possible solutions are discussed and first practical results (image filtering) are presented.


image understanding pattern recognition image processing knowledge engineering machine learning cognitive informatics 


  1. 1.
    Michalski, R.S., Steep, R.: Learning from Observation: Conceptual Clustering. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence Approach, vol. 2. Morgan Kaufmann, San Mateo (1986)Google Scholar
  2. 2.
    Michalski, R.S.: Inferential Theory of Learning and Inductive Databases. In: UQAM Summer Institute in Cognitive Sciences, June 30-July 11 (2003)Google Scholar
  3. 3.
    Muggleton, S.H., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19(20) (1994)Google Scholar
  4. 4.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Englewood Cliffs (2010)Google Scholar
  5. 5.
    Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology. STUDFUZZ, vol. 156. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  6. 6.
    Gennari, J., et al.: The evolution of Protégé: An environment for knowledge-based systems development. Int. Journal of Human-Computer Interaction. 58(1) (2003)Google Scholar
  7. 7.
    Wójcik, K.: Inductive learning methods in the simple image understanding system. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 97–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Krzysztof Wójcik
    • 1
  1. 1.Institute of Computer SciencePedagogical University of CracowKrakówPoland

Personalised recommendations