Advertisement

Augmented Reality Approaches in Intelligent Health Technologies and Brain Lesion Detection

  • Tomasz Hachaj
  • Marek R. Ogiela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6908)

Abstract

In this paper authors present their new proposition of system for cognitive analysis of dynamic computer tomography perfusion maps (dpCT). The novel contribution of this article is introducing an augmented reality visualization module that supports real time volume rendering (VR) of derived data. Authors also presents the results of their researches on optimization of VR algorithm memory usage by dynamic computation of volume gradient instead of pre-generation of gradient Authors compare five different discrete gradient computation schemas taking into account image quality and processing speed on two VR algorithms: volume ray casting and texture based visualization with view aligned slices.

Keywords

Pattern recognition cognitive analysis dynamic brain perfusion volume rendering gradient estimation augmented reality 

References

  1. 1.
    Jara, A.J., Zamora, M.A., Skarmeta, A.F.G.: An Initial Approach to Support Mobility in Hospital Wireless Sensor Networks based on 6LoWPAN (HWSN6). Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 2(3), 107–122 (2010)Google Scholar
  2. 2.
    Hachaj, T., Ogiela, M.R.: CAD system for automatic analysis of CT perfusion maps. Opto-Electronics Review 19(1), 95–103 (2011), doi:10.2478/s11772-010-0071-2CrossRefGoogle Scholar
  3. 3.
    Hachaj, T., Ogiela, M.R.: Computer – assisted diagnosis system for detection, measure and description of dynamic computer tomography perfusion maps. In: Choraś, R.S., Zabłudowski, A. (eds.) Image Processing and Communication Challenges (2009)Google Scholar
  4. 4.
    Hachaj, T., Ogiela, M.R.: A system for detecting and describing pathological changes using dynamic perfusion computer tomography brain maps. Computers in Biology and Medicine 41, 402–410 (2011)CrossRefGoogle Scholar
  5. 5.
    Bentum, M.J., Lichtenbelt, B.B.A., Malzbender, T.: Frequency Analysis of Gradient Estimators in Volume Rendering. Journal IEEE Transactions on Visualization and Computer Graphics Archive 2(3) (September 1996)Google Scholar
  6. 6.
    Mihajlovic, Z., Budin, L., Radej, J.: Gradient of B-splines in volume rendering. In: Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, MELECON 2004 (2004)Google Scholar
  7. 7.
    Csébfalvi, B., Domonkos, B.: Prefiltered Gradient Reconstruction for Volume Rendering. In: WSCG: The 17th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Pilsen, Czech Republic (2009)Google Scholar
  8. 8.
    Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf, D.: Real-Time Volume Graphics. CRC Press, Boca Raton (2006)Google Scholar
  9. 9.
    Krüuger, J., Westermann, R.: Acceleration Techniques for GPU-based Volume Rendering. IEEE Visualization (2003)Google Scholar
  10. 10.
    Hachaj, T., Ogiela, M.R.: Augmented reality interface for visualization of volumetric medical data. In: Image Processing and Communications Challenges, vol. 2, pp. 271–277. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Parraga, A., et al.: Non-rigid registration methods assessment of 3D CT images for head-neck radiotherapy. In: Proceedings of SPIE Medical Imaging (February 2007)Google Scholar
  12. 12.
    Hachaj, T.: The registration and atlas construction of noisy brain computer tomography images based on free form deformation technique. Bio-Algorithms and Med-Systems, Collegium Medicum - Jagiellonian University, Bio-Algorithms and Med-Systems 7 (2008)Google Scholar
  13. 13.
    Koenig, M., Kraus, M., Theek, C., Klotz, E., Gehlen, W., Heuser, L.: Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke; a Journal of Cerebral Circulation 32(2), 431–437 (2001)Google Scholar
  14. 14.
    Kutter, O., Aichert, A., Bichlmeier, C., Traub, J., Heining, S.M., Ockert, B., Euler, E., Navab, N.: Real-time Volume Rendering for High Quality Visualization in Augmented Reality. In: International Workshop on Augmented Environments for Medical Imaging including Augmented Reality in Computer-aided Surgery (AMI-ARCS 2008), USA, New York (September 2008)Google Scholar
  15. 15.
    Haller, M., Billinghurst, M., Thomas, B.: Emerging Technologies of Augmented Reality: Interfaces and Design. Idea Group Publishing, USA (2006)CrossRefGoogle Scholar
  16. 16.
    Yang, G., Jiang, T.: MIAR 2004. LNCS, vol. 3150. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Denis, K., et al.: Integrated Medical Workflow for Augmented Reality Applications. In: International Workshop on Augmented environments for Medical Imaging and Computer-aided Surgery, AMI-ARCS (2006)Google Scholar
  18. 18.
    Grimm, S.: Real-Time Mono- and Multi-Volume Rendering of Large Medical Datasets on Standard PC Hardware. PhD thesis, Vienna University of Technology, Gaullachergasse 33/35, 1160 Vienna, Austria (February 2005)Google Scholar
  19. 19.
    Phong, B.T.: Illumination for Computer Generated Pictures. Communications of the ACM 18(6), 311–317 (1975)CrossRefGoogle Scholar
  20. 20.
    Jonsson, M.: Volume rendering, Master’s Thesis in Computing Science, October 12 (2005), http://www8.cs.umu.se/education/examina/Rapporter/MarcusJonsson.pdf
  21. 21.
    Ballard, D.H., Brown, C.M.: Confocal Volume Rendering: Fast Segmentation-Free Visualization of Internal Structures. In: Proceedings of SPIE Medical Imaging 2000 — Image Display and Visualization, SPIE, San Diego, California, February 12-17, vol. 3976, pp. 70–76 (2000)Google Scholar
  22. 22.
    Chan, M.-Y., Wu, Y., Mak, W.-H., Chen, W., Qu, H.: Perception-Based Transparency Optimization for Direct Volume Rendering. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization / Information Visualization 2009) 15(6) (November-December 2009)Google Scholar
  23. 23.
    Pommert, A., Tiede, U., Wiebecke, G., Hohne, K.H.: Surface Shading in Tomographic Volume Visualization. In: Proceedings of the First Conference on Visualization in Biomedical Computing, vol. 1, p. 19 (1990)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Tomasz Hachaj
    • 1
  • Marek R. Ogiela
    • 2
  1. 1.Institute of Computer Science and Computer MethodsPedagogical University of KrakowKrakowPoland
  2. 2.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations