Advertisement

Calculation of the Massive Operator Matrix Elements up to \(O(a_s^2\varepsilon)\)

  • Sebastian Klein
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The quarkonic 2-loop massive

Keywords

Heavy Quark Anomalous Dimension Heavy Flavor Wilson Coefficient Order Difference Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys. B472, 611 (1996), hep-ph/9601302Google Scholar
  2. 2.
    M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Eur. Phys. J. C1, 301 (1998), hep-ph/9612398Google Scholar
  3. 3.
    K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov, Nucl. Phys. B174, 345 (1980)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    I. Bierenbaum, J. Blümlein, S. Klein, Nucl. Phys. B780, 40 (2007), hep-ph/0703285Google Scholar
  5. 5.
    S. Klein, Diploma Thesis, University of Potsdam (2006)Google Scholar
  6. 6.
    J. Blümlein, S. Kurth, Phys. Rev. D60, 014018 (1999), hep-ph/9810241Google Scholar
  7. 7.
    J.A.M. Vermaseren, Int. J. Mod. Phys. A14, 2037 (1999), hep-ph/9806280Google Scholar
  8. 8.
    J. Blümlein, Comput. Phys. Commun. 159, 19 (2004), hep-ph/0311046Google Scholar
  9. 9.
    J. Blümlein, Comput. Phys. Commun. 180, 2218 (2009), hep-ph/0901.3106Google Scholar
  10. 10.
    J. Blümlein, Structural Relations of Harmonic Sums and Mellin Transforms at Weight w=6, in Proceedings of the Workshop “Motives, Quantum Field Theory, and Pseudodifferential Operators, June (2008)” (Clay Institute, Boston University, 2009), math-ph/0901.0837Google Scholar
  11. 11.
    I. Bierenbaum, J. Blümlein, S. Klein, Phys. Lett. B672, 401 (2009), hep-ph/0901.0669Google Scholar
  12. 12.
    I. Bierenbaum, J. Blümlein, S. Klein, C. Schneider, Nucl. Phys. B803, 1 (2008), hep-ph/0803.0273Google Scholar
  13. 13.
    L. Slater, Generalized Hypergeometric Functions, (Cambridge University Press, Cambridge, 1966) pp. 273.zbMATHGoogle Scholar
  14. 14.
    W. Bailey, Generalized Hypergeometric Series, (Cambridge University Press, Cambridge, 1935) pp. 108.zbMATHGoogle Scholar
  15. 15.
    G. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, (Cambridge University Press, Cambridge, 2001) pp. 663.Google Scholar
  16. 16.
    C. Schneider, J. Diffr. Equ. Appl. 11(9), 799 (2005)zbMATHCrossRefGoogle Scholar
  17. 17.
    C. Schneider, Sém. Lothar. Combin. 56 (2007) Article B56b and Habilitation Thesis, JKU Linz (2007)Google Scholar
  18. 18.
    M. Steinhauser, Comput. Phys. Commun. 134, 335 (2001), hep-ph/0009029Google Scholar
  19. 19.
    I. Bierenbaum, J. Blümlein, S. Klein, Phys. Lett. B648, 195 (2007), hep-ph/0702265Google Scholar
  20. 20.
    R. Hamberg, Second order gluonic contributions to physical quantities, Ph.D. Thesis, Leiden, 1991Google Scholar
  21. 21.
    S. Weinzierl, Comput. Phys. Commun. 145, 357 (2002), math-ph/0201011Google Scholar
  22. 22.
    S. Moch, P. Uwer, Comput. Phys. Commun. 174, 759 (2006), math-ph/0508008Google Scholar
  23. 23.
    C. Schneider, Ann. Comb. 9(1), 75 (2005)Google Scholar
  24. 24.
    C. Schneider, in Proceedings ISSAC’05, p. 285, ACM Press, 2005Google Scholar
  25. 25.
    C. Schneider, in Proceedings FPSAC’07, p. 1, 2007Google Scholar
  26. 26.
    C. Schneider, J. Algebra Appl. 6(3), 415 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    M. Dittmar et al., Parton distributions: summary report for the HERA—LHC workshop, (2005), hep-ph/0511119Google Scholar
  28. 28.
    J.A.M. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B724, 3 (2005), hep-ph/0504242Google Scholar
  29. 29.
    S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B688, 101 (2004), hep-ph/0403192Google Scholar
  30. 30.
    A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111Google Scholar
  31. 31.
    J. Blümlein, S. Klein, PoS ACAT 2007, 084 (2007), hep-ph/0706.2426Google Scholar
  32. 32.
    J. Blümlein, Nucl. Phys. Proc. Suppl. 135, 225 (2004), hep-ph/0407044Google Scholar
  33. 33.
    J. Blümlein, V. Ravindran, Nucl. Phys. B716, 128 (2005), hep-ph/0501178Google Scholar
  34. 34.
    J. Blümlein, V. Ravindran, Nucl. Phys. B749, 1 (2006), hep-ph/0604019Google Scholar
  35. 35.
    J. Blümlein, A. De Freitas, W.L. van Neerven, S. Klein, Nucl. Phys. B755, 272 (2006), hep-ph/0608024Google Scholar
  36. 36.
    J. Blümlein, S. Klein, B. Tödtli, Phys. Rev. D80, 094010 (2009), hep-ph/0909.1547Google Scholar
  37. 37.
    I. Bierenbaum, J. Blümlein, S. Klein, in Proceedings of 15th International Workshop On Deep-Inelastic Scattering and Related Subjects (DIS2007), ed. by G. Grindhammer, K. Sachs. Two-loop massive operator matrix elements for polarized and unpolarized deep-inelastic scattering (16–20 April 2007, Munich), Vol. 2, p. 821, hep-ph/0706.2738Google Scholar
  38. 38.
    M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Nucl. Phys. B485, 420 (1997), hep-ph/9608342Google Scholar
  39. 39.
    I. Bierenbaum, J. Blümlein, S. Klein, to appearGoogle Scholar
  40. 40.
    I. Bierenbaum, J. Blümlein, S. Klein, Nucl. Phys. Proc. Suppl. 160, 85 (2006), hep-ph/0607300Google Scholar
  41. 39.
    J. Blümlein, Comput. Phys. Commun. 133, 76 (2000), hep-ph/0003100Google Scholar
  42. 42.
    J. Blümlein, S.-O. Moch, Phys. Lett. B614, 53 (2005), hep-ph/0503188Google Scholar
  43. 43.
    C.W. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, (2000), cs-sc/0004015Google Scholar
  44. 44.
    A. Devoto, D.W. Duke, Riv. Nuovo. Cim. 7(6), 1 (1984)MathSciNetCrossRefGoogle Scholar
  45. 45.
    J. Blümlein, H. Kawamura, Nucl. Phys. B708, 467 (2005), hep-ph/0409289Google Scholar
  46. 46.
    N. Nörlund, Vorlesungen über Differenzenrechnung, (Springer, Berlin, 1924) pp. 551.zbMATHGoogle Scholar
  47. 47.
    L. Milne-Thomson, The Calculus of finite Differences, (MacMillan, London, 1951) pp. 273.Google Scholar
  48. 48.
    R. Gosper, Proc. Nat. Acad. Sci. USA 75, 40 (1978)MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    D. Zeilberger, J. Symb. Comput. 11, 195 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    M. Petkovšek, H.S. Wilf, D. Zeilberger, A=B. (AK Peters, Wellesley, 1996)zbMATHGoogle Scholar
  51. 51.
    M. Karr, J. ACM 28, 305 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    C. Schneider, J. Symb. Comput. (2008). doi: 10.1016/j.jsc.2008.01.001.
  53. 53.
    C. Schneider, in Proceedings of ISSAC’04, ACM Press, 2004, p. 282Google Scholar
  54. 54.
    J.M. Borwein, D.M. Bradley, D.J. Broadhurst, P. Lisonek, Trans. Am. Math. Soc. 353, 907 (2001), math/9910045Google Scholar
  55. 55.
    A. Goncharov, Math. Res. Lett. 5, 497 (1998)MathSciNetzbMATHGoogle Scholar
  56. 56.
    M.P. Hoang Ngoc Minh, van der J. Hoeven, Discr. Math. 225, 217 (2000)zbMATHCrossRefGoogle Scholar
  57. 57.
    S. Moch, P. Uwer, S. Weinzierl, J. Math. Phys. 43, 3363 (2002), hep-ph/0110083Google Scholar
  58. 58.
    D. Zeilberger, J. Symb. Comput. 11, 195 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    P. Paule, C. Schneider, Adv. Appl. Math. 31(2), 359 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    K. Driver, H. Prodinger, C. Schneider, A. Weideman, Ramanujan J. 12(3), 299 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    M.E. Hoffman, J. Algebra 194, 477 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    M.E. Hoffman, Nucl. Phys. Proc. Suppl. 135, 215 (2004), math/0406589Google Scholar
  63. 63.
    D.J. Gross, F. Wilczek, Phys. Rev. D8, 3633 (1973)Google Scholar
  64. 64.
    D.J. Gross, F. Wilczek, Phys. Rev. D9, 980 (1974)Google Scholar
  65. 65.
    H. Georgi, H.D. Politzer, Phys. Rev. D9, 416 (1974)ADSGoogle Scholar
  66. 66.
    E.G. Floratos, D.A. Ross, C.T. Sachrajda, Nucl. Phys. B129, 66 (1977); [Erratum-ibid.] B139, 545 (1978)Google Scholar
  67. 67.
    E.G. Floratos, D.A. Ross, C.T. Sachrajda, Nucl. Phys. B152, 493 (1979)ADSCrossRefGoogle Scholar
  68. 68.
    A. Gonzalez-Arroyo, C. Lopez, F.J. Yndurain, Nucl. Phys. B153, 161 (1979)ADSCrossRefGoogle Scholar
  69. 69.
    A. Gonzalez-Arroyo, C. Lopez, Nucl. Phys. B166, 429 (1980)ADSCrossRefGoogle Scholar
  70. 70.
    G. Curci, W. Furmanski, R. Petronzio, Nucl. Phys. B175, 27 (1980)ADSCrossRefGoogle Scholar
  71. 71.
    W. Furmanski, R. Petronzio, Phys. Lett. B97, 437 (1980)ADSGoogle Scholar
  72. 72.
    R. Hamberg, van W.L. Neerven, Nucl. Phys. B379, 143 (1992)ADSCrossRefGoogle Scholar
  73. 73.
    D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)ADSCrossRefGoogle Scholar
  74. 74.
    H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)ADSCrossRefGoogle Scholar
  75. 75.
    I.B. Khriplovich, Yad. Fiz. 10, 409 (1969)Google Scholar
  76. 76.
    S. Moch, J.A.M. Vermaseren, Nucl. Phys. B573, 853 (2000), hep-ph/9912355Google Scholar
  77. 77.
    E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Nucl. Phys. B392, 162 (1993)Google Scholar
  78. 78.
    E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Nucl. Phys. B392, 229 (1993)Google Scholar
  79. 79.
    S. Riemersma, J. Smith, W.L. van Neerven, Phys. Lett. B347, 143 (1995), hep-ph/9411431Google Scholar
  80. 80.
    E. Barnes, Proc. Lond. Math. Soc. 6(2), 141 (1908)zbMATHCrossRefGoogle Scholar
  81. 81.
    E. Barnes, Quart. J. Math. 41, 136 (1910)zbMATHGoogle Scholar
  82. 82.
    H. Mellin, Math. Ann. 68, 305 (1910)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    E. Whittaker, G. Watson, A Course of Modern Analysis (Cambridge University Press, Cambridge, 1927) p. 616, reprinted 1996Google Scholar
  84. 84.
    E. Titchmarsh, Introduction to the Theory of Fourier Integrals (Calendron Press, Oxford, 1937; 2nd Edn. 1948)Google Scholar
  85. 85.
    R. Paris, D.D. Kaminski, Asymptotics and Mellin-Barnes Integrals, (Cambridge University Press, Cambridge, 2001) pp. 438.zbMATHCrossRefGoogle Scholar
  86. 86.
    I. Bierenbaum, S. Weinzierl, Eur. Phys. J. C32, 67 (2003), hep-ph/0308311Google Scholar
  87. 87.
    I. Bierenbaum, J. Blümlein, S. Klein, Two-loop massive operator matrix elements for polarized and unpolarized deep-inelastic scattering, PoS ACAT 2007, 070 (2007)Google Scholar
  88. 88.
    M. Czakon, Comput. Phys. Commun. 175, 559 (2006), hep-ph/0511200Google Scholar
  89. 89.
    A. Djouadi, P. Gambino, Phys. Rev. D49, 3499 (1994), hep-ph/9309298Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Theoretical Particle Physics and Cosmology, RWTH AachenAachenGermany

Personalised recommendations