Advertisement

Conclusions

  • Sebastian Klein
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this thesis, we extended the description of the contributions of a single heavy quark to the unpolarized Wilson coefficients \({\mathcal C}_{(q,g),2}^{ S,PS,NS}\) to \(O(a_s^3)\). In upcoming precision analyzes of deep-inelastic data, this will allow more precise determinations of parton distribution functions and of the strong coupling constant.

Keywords

Heavy Quark Anomalous Dimension Parton Distribution Function Strong Coupling Constant Wilson Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys. B472, 611 (1996), hep-ph/9601302Google Scholar
  2. 2.
    J.A.M. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B724, 3 (2005), hep-ph/0504242Google Scholar
  3. 3.
    E. Laenen, S. Riemersma, J. Smith, van W.L. Neerven, Nucl. Phys. B392, 162 (1993a)Google Scholar
  4. 4.
    E. Laenen, S. Riemersma, J. Smith, van W.L. Neerven, Nucl. Phys. B392, (1993b)Google Scholar
  5. 5.
    S. Riemersma, J. Smith, W.L. van Neerven, Phys. Lett. B347, 143 (1995), hep-ph/9411431Google Scholar
  6. 6.
    M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Eur. Phys. J. C1, 301 (1998), hep-ph/9612398Google Scholar
  7. 7.
    C. Schneider, Ann. Comb. 9(1) 75 (2005)Google Scholar
  8. 8.
    C. Schneider, in Proceedings of ISSAC’05, (ACM Press, New York, 2005), p. 285Google Scholar
  9. 9.
    C. Schneider, in Proceedings of FPSAC’07 (2007), p. 1Google Scholar
  10. 10.
    C. Schneider, J. Algebra Appl. 6(3), 415 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Schneider, J. Diff. Equ. Appl. 11(9), 799 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    C. Schneider, Sém. Lothar. Combin. 56 (2007) Article B56b and Habilitation Thesis, JKU Linz, (2007)Google Scholar
  13. 13.
    P. Nogueira, J. Comput. Phys. 105, 279 (1993)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Steinhauser, Comput. Phys. Commun. 134, 335 (2001), hep-ph/0009029Google Scholar
  15. 15.
    S.A. Larin, P. Nogueira, T. van Ritbergen, J.A.M. Vermaseren, Nucl. Phys. B492, 338 (1997), hep-ph/9605317Google Scholar
  16. 16.
    A. Retey, J.A.M. Vermaseren, Nucl. Phys. B604, 281 (2001), hep-ph/0007294Google Scholar
  17. 17.
    M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Nucl. Phys. B485, 420 (1997), hep-ph/9608342Google Scholar
  18. 18.
    J.A. Gracey, Nucl. Phys. B662, 247 (2003a), hep-ph/0304113Google Scholar
  19. 19.
    J.A. Gracey, Nucl. Phys. B667, 242 (2003b), hep-ph/0306163Google Scholar
  20. 20.
    J.A. Gracey, JHEP 10, 040 (2006a), hep-ph/0609231Google Scholar
  21. 21.
    J.A. Gracey, Phys. Lett. B643, 374 (2006b), hep-ph/0611071Google Scholar
  22. 22.
    G. Zweig, An SU (3) model for the strong interaction symmetry and its breaking, CERN-TH-401, 412 (1964)Google Scholar
  23. 23.
    S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B688, 101 (2004), hep-ph/0403192Google Scholar
  24. 24.
    A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Theoretical Particle Physics and Cosmology, RWTH AachenAachenGermany

Personalised recommendations