Axiomatizing Weak Ready Simulation Semantics over BCCSP

  • Luca Aceto
  • David de Frutos Escrig
  • Carlos Gregorio-Rodríguez
  • Anna Ingolfsdottir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6916)

Abstract

Ready simulation has proven to be one of the most significant semantics in process theory. It is at the heart of a number of general results that pave the way to a comprehensive understanding of the spectrum of process semantics. Since its original definition by Bloom, Istrail and Meyer in 1995, several authors have proposed generalizations of ready simulation to deal with internal actions. However, a thorough study of the (non-)existence of finite (in)equational bases for weak ready simulation semantics is still missing in the literature. This paper presents a complete account of positive and negative results on the axiomatizability of weak ready simulation semantics over the language BCCSP. In addition, this study offers a thorough analysis of the axiomatizability properties of weak simulation semantics.

Keywords

Equational Theory Process Semantic Operational Semantic Axiom System Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Information and Compututation 111(1), 1–52 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aceto, L., de Frutos Escrig, D., Gregorio-Rodríguez, C., Ingólfsdóttir, A.: Complete and ready simulation semantics are not finitely based over BCCSP, even with a singleton alphabet. Information Processing Letters 111(9), 408–413 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aceto, L., Fokkink, W.J., Ingólfsdóttir, A.: Ready to preorder: Get your BCCSP axiomatization for free! In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 65–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Aceto, L., Fokkink, W.J., Ingólfsdóttir, A., Luttik, B.: Finite equational bases in process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: A finite equational base for CCS with left merge and communication merge. ACM Trans. Comput. Log. 10(1) (2009)Google Scholar
  6. 6.
    Aceto, L., Fokkink, W., Ingólfsdóttir, A., Mousavi, M.R.: Lifting non-finite axiomatizability results to extensions of process algebras. Acta Informatica 47(3), 147–177 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Aceto, L., Hennessy, M.: Termination, deadlock and divergence. Journal of the ACM 39(1), 147–187 (1992)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Aceto, L., Ingolfsdottir, A., Luttik, B., van Tilburg, P.: Finite equational bases for fragments of CCS with restriction and relabelling. In: 5th IFIP International Conference on Theoretical Computer Science. IFIP, vol. 273, pp. 317–332. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Baeten, J.C.M., de Vink, E.P.: Axiomatizing GSOS with termination. Journal of Logic and Algebraic Programming 60-61, 323–351 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1-3), 109–137 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the ACM 42(1), 232–268 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chen, T.: Clocks, Dice and Processes. PhD thesis, Centrum voor Wiskunde en Informatica (CWI), Vrije Universiteit, Amsterdam (2009)Google Scholar
  14. 14.
    Chen, T., Fokkink, W.: On the axiomatizability of impossible futures: Preorder versus equivalence. In: LICS, pp. 156–165. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  15. 15.
    Chen, T., Fokkink, W., Luttik, B., Nain, S.: On finite alphabets and infinite bases. Information and Computation 206(5), 492–519 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Chen, T., Fokkink, W., van Glabbeek, R.J.: Ready to preorder: The case of weak process semantics. Information Processing Letters 109(2), 104–111 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of process semantics: Equational semantics. Electronic Notes in Theoretical Computer Science 249, 243–267 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    de Frutos-Escrig, D., Gregorio-Rodríguez, C.: Universal coinductive characterizations of process semantics. In: 5th IFIP International Conference on Theoretical Computer Science. IFIP, vol. 273, pp. 397–412. Springer, Heidelberg (2008)Google Scholar
  19. 19.
    de Frutos-Escrig, D., Gregorio-Rodríguez, C.: (Bi)simulations up-to characterise process semantics. Information and Computation 207(2), 146–170 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: Ready to preorder: an algebraic and general proof. Journal of Logic and Algebraic Programming 78(7), 539–551 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    van Glabbeek, R.J.: The linear time - branching time spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  23. 23.
    van Glabbeek, R.J.: The linear time – branching time spectrum I; the semantics of concrete, sequential processes. In: Handbook of Process Algebra, vol. ch. 1, pp. 3–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  24. 24.
    van Glabbeek, R.J., Weijland, P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    van Glabbeek, R.J.: A characterisation of weak bisimulation congruence. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 26–39. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Groote, J.F.: A new strategy for proving omega-completeness applied to process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 314–331. Springer, Heidelberg (1990)Google Scholar
  27. 27.
    Hennessy, M.: A term model for synchronous processes. Informationa and Control 51(1), 58–75 (1981)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32, 137–161 (1985)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  30. 30.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation, 94(1):1–28 (1991)Google Scholar
  31. 31.
    Lüttgen, G., Vogler, W.: Ready simulation for concurrency: It’s logical! Information and Computation 208(7), 845–867 (2010)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Milner, R.: An algebraic definition of simulation between programs. In: Proceedings 2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971); Also available as Report No. CS-205, Computer Science Department, Stanford UniversityGoogle Scholar
  33. 33.
    Milner, R.: A modal characterisation of observable machine behaviour. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  34. 34.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  35. 35.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviors. Information and Computation 81(2), 227–247 (1989)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Moller, F.: Axioms for Concurrency. PhD thesis, Report CST-59-89, Department of Computer Science, University of Edinburgh (1989)Google Scholar
  37. 37.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Ulidowski, I.: Axiomatisations of weak equivalences for De Simone languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 219–233. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  39. 39.
    Ulidowski, I.: Refusal simulation and interactive games. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 208–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Information Processing Letters 80(1), 51–58 (2001)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Walker, D.: Bisimulation and divergence. Information and Computation 85(2), 202–241 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luca Aceto
    • 1
    • 3
  • David de Frutos Escrig
    • 2
    • 3
  • Carlos Gregorio-Rodríguez
    • 2
    • 3
  • Anna Ingolfsdottir
    • 1
    • 3
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityIceland
  2. 2.Departamento de Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridSpain
  3. 3.Abel Extraordinary ChairUniversidad Complutense-Reykjavik UniversitySpain

Personalised recommendations