Skip to main content

Muscarinic Pain Pharmacology: Realizing the Promise of Novel Analgesics by Overcoming Old Challenges

  • Chapter
  • First Online:
Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

The antinociceptive and analgesic effects of muscarinic receptor ligands in human and nonhuman species have been evident for more than half a century. In this review, we describe the current understanding of the roles of different muscarinic subtypes in pain modulation and their mechanism of action along the pain signaling pathway, including peripheral nociception, spinal cord pain processing, and supraspinal analgesia. Extensive preclinical and clinical validation of these mechanisms points to the development of selective muscarinic agonists as one of the most exciting and promising avenues toward novel pain medications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-DAMP:

4-Diphenyl-acetoxy-N-methyl-piperidine methiodide

ACh:

Acetylcholine

ALCAR:

Acetyl-l-carnitine

aODN:

Antisense oligodeoxyribonucleotide

ATP:

Adenosine triphosphate

BHK:

Baby hamster kidney

BuTAC:

[5R-(exo)]-6-[4-butylthio-1,2,5-thiadiazol-3-yl]-1-azabicyclo-[3.2.1]-octane

CFA:

Complete Freund’s adjuvant

CGRP:

Calcitonin gene related peptide

CRPS:

Complex regional pain syndrome

DRG:

Dorsal root ganglion

EPSC:

Excitatory postsynaptic current

GABA:

Gamma-aminobutyric acid

GTPγS:

Guanosine 5′-O-[gamma-thio]triphosphate

HC-3:

Hemicolinium-3

i.c.v.:

Intracerebroventricular

i.t.:

Intrathecal

IB4:

Isolectin B4

IPSC:

Inhibitory postsynaptic current

mAChR:

Muscarinic receptor

MT-3:

Muscarinic toxin 3

MT-7:

Muscarinic toxin 7

NMS:

N-methylscopolamine

NRM:

Nucleus raphe magnus

NSAIDs:

Nonsteroidal anti-inflammatory agents

OXO:

Oxotremorine

OXO-M:

Oxotremorine methiodide

PAG:

Periaqueductal gray

PAM:

Positive allosteric modulator

PTX:

Pertussis toxin

QRT-PCR:

Quantitative real-time polymerase chain reaction

RT-PCR:

Reverse transcription polymerase chain reaction

RVM:

Rostral ventromedial medulla

SCS:

Spinal cord stimulation

siRNA:

Small interfering ribonucleic acid

STZ:

Streptozotocin

substituted TZTP:

3-3(Substituted-1,2,5-thiadiazol-4-yl)-12,5,6-tetrahydro-1-methyl pyridine

TNF:

Tumor necrosis factor

TRPV1:

Transient vanilloid receptor 1; the capsaicin receptor

TTX:

Tetrodotoxin

WT:

Wild-type

References

  • Abe K, Taguchi K, Kato M, Utsunomiya I, Chikuma T, Hojyo H, Miyatake T (2003) Characterization of muscarinic receptor subtypes in the rostral ventrolateral medulla and effects on morphine-induced antinociception in rats. Eur J Pharmacol 465:237–249

    PubMed  CAS  Google Scholar 

  • Abelson KS, Hoglund AU (2002a) Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats. Pharmacol Toxicol 90:187–192

    PubMed  CAS  Google Scholar 

  • Abelson KS, Hoglund AU (2002b) Intravenously administered lidocaine in therapeutic doses increases the intraspinal release of acetylcholine in rats. Neurosci Lett 317:93–96

    PubMed  CAS  Google Scholar 

  • Avlani VA, Langmead CJ, Guida E, Wood MD, Tehan BG, Herdon HJ, Watson JM, Sexton PM, Christopoulos A (2010) Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol Pharmacol 78(1):94–104

    PubMed  CAS  Google Scholar 

  • Barocelli E, Ballabeni V, Bertoni S, De Amici M, Impicciatore M (2001) Evidence for specific analgesic activity of a muscarinic agonist selected among a new series of acetylenic derivatives. Life Sci 68:1775–1785

    PubMed  CAS  Google Scholar 

  • Bartolini A, Ghelardini C, Fantetti L, Malcangio M, Malmberg-Aiello P, Giotti A (1992) Role of muscarinic receptor subtypes in central antinociception. Br J Pharmacol 105:77–82

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2008) Descending monoaminergic pain modulation: bidirectional control and clinical relevance. Neurology 71:217–221

    PubMed  Google Scholar 

  • Ben-Sreti MM, Sewell RD (1982) Stereospecific inhibition of oxotremorine-induced antinociception by (+)-isomers of opioid antagonists: comparison with opioid receptor agonists. J Pharm Pharmacol 34:501–505

    PubMed  CAS  Google Scholar 

  • Bernardini N, Levey AI, Augusti-Tocco G (1999) Rat dorsal root ganglia express m1-m4 muscarinic receptor proteins. J Peripher Nerv Syst 4:222–232

    PubMed  CAS  Google Scholar 

  • Bernardini N, Reeh PW, Sauer SK (2001a) Muscarinic M2 receptors inhibit heat-induced CGRP release from isolated rat skin. Neuroreport 12:2457–2460

    PubMed  CAS  Google Scholar 

  • Bernardini N, Sauer SK, Haberberger R, Fischer MJ, Reeh PW (2001b) Excitatory nicotinic and desensitizing muscarinic (M2) effects on C-nociceptors in isolated rat skin. J Neurosci 21:3295–3302

    PubMed  CAS  Google Scholar 

  • Bernardini N, Roza C, Sauer SK, Gomeza J, Wess J, Reeh PW (2002) Muscarinic M2 receptors on peripheral nerve endings: a molecular target of antinociception. J Neurosci 22:RC229

    PubMed  Google Scholar 

  • Breivik H, Stubhaug A (2008) Management of acute postoperative pain: still a long way to go! Pain 137:233–234

    PubMed  Google Scholar 

  • Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem 52:3445–3448

    PubMed  CAS  Google Scholar 

  • Burke S, Shorten GD (2009) When pain after surgery doesn’t go away. Biochem Soc Trans 37:318–322

    PubMed  CAS  Google Scholar 

  • Burton AW, Lubenow TR, Prithvi Raj P (2005) Traditional interventional therapies. In: Wilson PR, Stanton-Hicks M, Harden RN (eds) CRPS: current diagnosis and therapies, 1st edn. IASP, Seattle, WA

    Google Scholar 

  • Cai YQ, Chen SR, Han HD, Sood AK, Lopez-Berestein G, Pan HL (2009) Role of M2, M3, and M4 muscarinic receptor subtypes in the spinal cholinergic control of nociception revealed using siRNA in rats. J Neurochem 111:1000–1010

    PubMed  CAS  Google Scholar 

  • Calogero AE, Kamilaris TC, Gomez MT, Johnson EO, Tartaglia ME, Gold PW, Chrousos GP (1989) The muscarinic cholinergic agonist arecoline stimulates the rat hypothalamic-pituitary-adrenal axis through a centrally-mediated corticotropin-releasing hormone-dependent mechanism. Endocrinology 125:2445–2453

    PubMed  CAS  Google Scholar 

  • Capone F, Aloisi AM, Carli G, Sacerdote P, Pavone F (1999) Oxotremorine-induced modifications of the behavioral and neuroendocrine responses to formalin pain in male rats. Brain Res 830:292–300

    PubMed  CAS  Google Scholar 

  • Carter ML (2004) Spinal cord stimulation in chronic pain: a review of the evidence. Anaesth Intensive Care 32:11–21

    PubMed  CAS  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Celestin J, Edwards RR, Jamison RN (2009) Pretreatment psychosocial variables as predictors of outcomes following lumbar surgery and spinal cord stimulation: a systematic review and literature synthesis. Pain Med 10:639–653

    PubMed  Google Scholar 

  • Chen SR, Pan HL (2001) Spinal endogenous acetylcholine contributes to the analgesic effect of systemic morphine in rats. Anesthesiology 95:525–530

    PubMed  CAS  Google Scholar 

  • Chen SR, Pan HL (2003a) Spinal GABAB receptors mediate antinociceptive actions of cholinergic agents in normal and diabetic rats. Brain Res 965:67–74

    PubMed  CAS  Google Scholar 

  • Chen SR, Pan HL (2003b) Up-regulation of spinal muscarinic receptors and increased antinociceptive effect of i.t. muscarine in diabetic rats. J Pharmacol Exp Ther 307:676–681

    PubMed  CAS  Google Scholar 

  • Chen SR, Pan HL (2004) Activation of muscarinic receptors inhibits spinal dorsal horn projection neurons: role of GABAB receptors. Neuroscience 125:141–148

    PubMed  CAS  Google Scholar 

  • Chen SR, Wess J, Pan HL (2005a) Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice. J Pharmacol Exp Ther 313:765–770

    PubMed  CAS  Google Scholar 

  • Chen YP, Chen SR, Pan HL (2005b) Systemic morphine inhibits dorsal horn projection neurons through spinal cholinergic system independent of descending patwhays. J Pharmacol Exp Ther 314:611–617

    PubMed  CAS  Google Scholar 

  • Clayton BA, Hayashida K, Childers SR, Xiao R, Eisenach JC (2007) Oral donepezil reduces hypersensitivity after nerve injury by a spinal muscarinic receptor mechanism. Anesthesiology 106:1019–1025

    PubMed  CAS  Google Scholar 

  • Coderre TJ, Abbott FV, Melzack R (1984) Effects of peripheral antisympathetic treatments in the tail-flick, formalin and autotomy tests. Pain 18:13–23

    PubMed  CAS  Google Scholar 

  • Conn PJ, Christopoulos A, Lindsley CW (2009a) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8:41–54

    PubMed  CAS  Google Scholar 

  • Conn PJ, Jones CK, Lindsley CW (2009b) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155

    PubMed  CAS  Google Scholar 

  • Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–307

    PubMed  CAS  Google Scholar 

  • de Leon-Casasola OA (2009) Spinal cord and peripheral nerve stimulation techniques for neuropathic pain. J Pain Symptom Manage 38:S28–S38

    PubMed  Google Scholar 

  • Di Cesare ML, Ghelardini C, Calvani M, Nicolai R, Mosconi L, Toscano A, Pacini A, Bartolini A (2009) Neuroprotective effects of acetyl-l-carnitine on neuropathic pain and apoptosis: a role for the nicotinic receptor. J Neurosci Res 87:200–207

    Google Scholar 

  • Dorje F, Levey AI, Brann MR (1991a) Immunological detection of muscarinic receptor subtype proteins (m1-m5) in rabbit peripheral tissues. Mol Pharmacol 40:459–462

    PubMed  CAS  Google Scholar 

  • Dorje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR (1991b) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 256:727–733

    PubMed  CAS  Google Scholar 

  • Duflo F, Conklin D, Li X, Eisenach JC (2003) Spinal adrenergic and cholinergic receptor interactions activated by clonidine in postincisional pain. Anesthesiology 98:1237–1242

    PubMed  CAS  Google Scholar 

  • Dussor GO, Helesic G, Hargreaves KM, Flores CM (2004) Cholinergic modulation of nociceptive responses in vivo and neuropeptide release in vitro at the level of the primary sensory neuron. Pain 107:22–32

    PubMed  CAS  Google Scholar 

  • Duttaroy A, Gomeza J, Gan JW, Siddiqui N, Basile AS, Harman WD, Smith PL, Felder CC, Levey AI, Wess J (2002) Evaluation of muscarinic agonist-induced analgesia in muscarinic acetylcholine receptor knockout mice. Mol Pharmacol 62:1084–1093

    PubMed  CAS  Google Scholar 

  • Eisenach JC (1999) Muscarinic-mediated analgesia. Life Sci 64:549–554

    PubMed  CAS  Google Scholar 

  • Eisenach JC (2009) Epidural neostigmine: will it replace lipid soluble opioids for postoperative and labor analgesia? Anesth Analg 109:293–295

    PubMed  Google Scholar 

  • Eisenach JC, Detweiler DJ, Tong C, D’Angelo R, Hood DD (1996) Cerebrospinal fluid norepinephrine and acetylcholine concentrations during acute pain. Anesth Analg 82:621–626

    PubMed  CAS  Google Scholar 

  • Ellis JL, Harman D, Gonzalez J, Spera ML, Liu R, Shen TY, Wypij DM, Zuo F (1999) Development of muscarinic analgesics derived from epibatidine: role of the M4 receptor subtype. J Pharmacol Exp Ther 288:1143–1150

    PubMed  CAS  Google Scholar 

  • Franco AC, Prado WA (1996) Antinociceptive effects of stimulation of discrete sites in the rat hypothalamus: evidence for the participation of the lateral hypothalamus area in descending pain suppression mechanisms. Braz J Med Biol Res 29:1531–1541

    PubMed  CAS  Google Scholar 

  • Gage HD, Gage JC, Tobin JR, Chiari A, Tong C, Xu Z, Mach RH, Efange SM, Ehrenkaufer RL, Eisenach JC (2001) Morphine-induced spinal cholinergic activation: in vivo imaging with positron emission tomography. Pain 91:139–145

    PubMed  CAS  Google Scholar 

  • Galeotti N, Bartolini A, Ghelardini C (2003) The phospholipase C-IP3 pathway is involved in muscarinic antinociception. Neuropsychopharmacology 28:888–897

    PubMed  CAS  Google Scholar 

  • Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27:729–737

    PubMed  CAS  Google Scholar 

  • George R, Haslett WL, Jenden DJ (1962) The central action of a metabolite of tremorine. Life Sci 1:361–363

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Gualtieri F, Bellucci C, Manetti D, Giotti A, Malmberg-Aiello P, Galli A, Bartolini A (1997a) Antinociceptive profile of 3-alpha-tropanyl 2-(4-Cl-phenoxy)butyrate (SM-21) [corrected]: a novel analgesic with a presynaptic cholinergic mechanism of action. J Pharmacol Exp Ther 282:430–439

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Gualtieri F, Novella Romanelli M, Bartolini A (1997b) Antinociception induced by SM 32 depends on a central cholinergic mechanism. Pharmacol Res 35:141–147

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Gualtieri F, Novella Romanelli M, Angeli P, Pepeu G, Grazia Giovannini M, Casamenti F, Malmberg-Aiello P, Giotti A, Bartolini A (1997c) Stereoselective increase in cholinergic transmission by R-(+)-hyoscyamine. Neuropharmacology 36:281–294

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Gualtieri F, Marchese V, Bellucci C, Bartolini A (1998) Antinociceptive and antiamnesic properties of the presynaptic cholinergic amplifier PG-9. J Pharmacol Exp Ther 284:806–816

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Bartolini A (2000) Loss of muscarinic antinociception by antisense inhibition of M(1) receptors. Br J Pharmacol 129:1633–1640

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Lelli C, Bartolini A (2001) M1 receptor activation is a requirement for arecoline analgesia. Farmaco 56:383–385

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Calvani M, Mosconi L, Nicolai R, Bartolini A (2002) Acetyl-l-carnitine induces muscarinic antinocieption in mice and rats. Neuropharmacology 43:1180–1187

    PubMed  CAS  Google Scholar 

  • Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697

    PubMed  CAS  Google Scholar 

  • Grando SA, Kist DA, Qi M, Dahl MV (1993) Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Invest Dermatol 101:32–36

    PubMed  CAS  Google Scholar 

  • Guimaraes AP, Guimaraes FS, Prado WA (2000) Modulation of carbachol-induced antinociception from the rat periaqueductal gray. Brain Res Bull 51:471–478

    PubMed  CAS  Google Scholar 

  • Haberberger RV, Bodenbenner M (2000) Immunohistochemical localization of muscarinic receptors (M2) in the rat skin. Cell Tissue Res 300:389–396

    PubMed  CAS  Google Scholar 

  • Habib AS, Gan TJ (2006) Use of neostigmine in the management of acute postoperative pain and labour pain: a review. CNS Drugs 20:821–839

    PubMed  CAS  Google Scholar 

  • Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, Idzerda RL, Nathanson NM (1997) Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94:13311–13316

    PubMed  CAS  Google Scholar 

  • Hardouin SN, Richmond KN, Zimmerman A, Hamilton SE, Feigl EO, Nathanson NM (2002) Altered cardiovascular responses in mice lacking the M(1) muscarinic acetylcholine receptor. J Pharmacol Exp Ther 301:129–137

    PubMed  CAS  Google Scholar 

  • Hartvig P, Gillberg PG, Gordh T Jr, Post C (1989) Cholinergic mechanisms in pain and analgesia. Trends Pharmacol Sci 10(Suppl):75–79

    Google Scholar 

  • Hayashida K, Parker R, Eisenach JC (2007) Oral gabapentin activates spinal cholinergic circuits to reduce hypersensitivity after peripheral nerve injury and interacts synergistically with oral donepezil. Anesthesiology 106:1213–1219

    PubMed  CAS  Google Scholar 

  • Hedge GA, de Wied D (1971) Corticotropin and vasopressin secretion after hypothalamic implantation of atropine. Endocrinology 88:1257–1259

    PubMed  CAS  Google Scholar 

  • Hemrick-Luecke SK, Bymaster FP, Evans DC, Wess J, Felder CC (2002) Muscarinic agonist-mediated increases in serum corticosterone levels are abolished in m(2) muscarinic acetylcholine receptor knockout mice. J Pharmacol Exp Ther 303:99–103

    PubMed  CAS  Google Scholar 

  • Ho KM, Ismail H, Lee KC, Branch R (2005) Use of intrathecal neostigmine as an adjunct to other spinal medications in perioperative and peripartum analgesia: a meta-analysis. Anaesth Intensive Care 33:41–53

    PubMed  CAS  Google Scholar 

  • Hoglund AU, Baghdoyan HA (1997) M2, M3 and M4, but not M1, muscarinic receptor subtypes are present in rat spinal cord. J Pharmacol Exp Ther 281:470–477

    PubMed  CAS  Google Scholar 

  • Hoglund AU, Hamilton C, Lindblom L (2000) Effects of microdialyzed oxotremorine, carbachol, epibatidine, and scopolamine on intraspinal release of acetylcholine in the rat. J Pharmacol Exp Ther 295:100–104

    PubMed  CAS  Google Scholar 

  • Honda K, Ando S, Koga K, Takano Y (2004) The spinal muscarinic receptor subtypes contribute to the morphine-induced antinociceptive effects in thermal stimulation in mice. Neurosci Lett 371:235–238

    PubMed  CAS  Google Scholar 

  • Hood DD, Mallak KA, Eisenach JC, Tong C (1996) Interaction between intrathecal neostigmine and epidural clonidine in human volunteers. Anesthesiology 85:315–325

    PubMed  CAS  Google Scholar 

  • Hood DD, Mallak KA, James RL, Tuttle R, Eisenach JC (1997) Enhancement of analgesia from systemic opioid in humans by spinal cholinesterase inhibition. J Pharmacol Exp Ther 282:86–92

    PubMed  CAS  Google Scholar 

  • Ireson JD (1970) A comparison of the antinociceptive actions of cholinomimetic and morphine-like drugs. Br J Pharmacol 40:92–101

    PubMed  CAS  Google Scholar 

  • Iwamoto ET, Marion L (1993) Characterization of the antinociception produced by intrathecally administered muscarinic agonists in rats. J Pharmacol Exp Ther 266:329–338

    PubMed  CAS  Google Scholar 

  • Iwamoto ET, Marion L (1994) Pharmacological evidence that nitric oxide mediates the antinociception produced by muscarinic agonists in the rostral ventral medulla of rats. J Pharmacol Exp Ther 269:699–708

    PubMed  CAS  Google Scholar 

  • Janig W (2009) Autonomic nervous system and pain. In: Basbaum AI, Bushnell MC (eds) Science of pain, 1st edn. Elsevier, San Diego, CA

    Google Scholar 

  • Jones PG, Dunlop J (2007) Targeting the cholinergic system as a therapeutic strategy for the treatment of pain. Neuropharmacology 53:197–206

    PubMed  CAS  Google Scholar 

  • Kang YJ, Eisenach JC (2003) Intrathecal clonidine reduces hypersensitivity after nerve injury by a mechanism involving spinal m4 muscarinic receptors. Anesth Analg 96:1403–1408, Table of contents

    PubMed  CAS  Google Scholar 

  • Karaaslan K, Gulcu N, Ozturk H, Sarpkaya A, Colak C, Kocoglu H (2009) Two different doses of caudal neostigmine co-administered with levobupivacaine produces analgesia in children. Paediatr Anaesth 19:487–493

    PubMed  Google Scholar 

  • Katz J, Seltzer Z (2009) Transition from acute to chronic postsurgical pain: risk factors and protective factors. Expert Rev Neurother 9:723–744

    PubMed  Google Scholar 

  • Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H (2007) Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci 80:2314–2319

    PubMed  CAS  Google Scholar 

  • Kehlet H, Jensen TS, Woolf CJ (2006) Persistent postsurgical pain: risk factors and prevention. Lancet 367:1618–1625

    PubMed  Google Scholar 

  • Khan ZH, Hamidi S, Miri M, Majedi H, Nourijelyani K (2008) Post-operative pain relief following intrathecal injection of acetylcholine esterase inhibitor during lumbar disc surgery: a prospective double blind randomized study. J Clin Pharm Ther 33:669–675

    PubMed  CAS  Google Scholar 

  • Kim SH, Chung JM (1991) Sympathectomy alleviates mechanical allodynia in an experimental animal model for neuropathy in the rat. Neurosci Lett 134:131–134

    PubMed  CAS  Google Scholar 

  • Klimscha W, Tong C, Eisenach JC (1997) Intrathecal alpha 2-adrenergic agonists stimulate acetylcholine and norepinephrine release from the spinal cord dorsal horn in sheep. An in vivo microdialysis study. Anesthesiology 87:110–116

    PubMed  CAS  Google Scholar 

  • Kommalage M, Hoglund AU (2005) Involvement of spinal serotonin receptors in the regulation of intraspinal acetylcholine release. Eur J Pharmacol 509:127–134

    PubMed  CAS  Google Scholar 

  • Kubista H, Kosenburger K, Mahlknecht P, Drobny H, Boehm S (2009) Inhibition of transmitter release from rat sympathetic neurons via presynaptic M(1) muscarinic acetylcholine receptors. Br J Pharmacol 156:1342–1352

    PubMed  CAS  Google Scholar 

  • Langley RJ, Kalra R, Mishra NC, Sopori ML (2004) Central but not the peripheral action of cholinergic compounds suppresses the immune system. J Neuroimmunol 148:140–145

    PubMed  CAS  Google Scholar 

  • Lauretti GR, Gomes JM, Reis MP, Pereira NL (1999) Low doses of epidural ketamine or neostigmine, but not midazolam, improve morphine analgesia in epidural terminal cancer pain therapy. J Clin Anesth 11:663–668

    PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    PubMed  CAS  Google Scholar 

  • Li DP, Chen SR, Pan YZ, Levey AI, Pan HL (2002) Role of presynaptic muscarinic and GABA(B) receptors in spinal glutamate release and cholinergic analgesia in rats. J Physiol 543:807–818

    PubMed  CAS  Google Scholar 

  • Lograsso M, Nadeson R, Goodchild CS (2002) The spinal antinociceptive effects of cholinergic drugs in rats: receptor subtype specificity in different nociceptive tests. BMC Pharmacol 2:20

    PubMed  Google Scholar 

  • MacLennan AJ, Drugan RC, Hyson RL, Maier SF, Jt M, Barchas JD (1982) Corticosterone: a critical factor in an opioid form of stress-induced analgesia. Science 215:1530–1532

    PubMed  CAS  Google Scholar 

  • Masuda H, Ichiyanagi N, Yokoyama M, Sakai Y, Kihara K, Chancellor MB, de Groat WC, Yoshimura N (2009) Muscarinic receptor activation in the lumbosacral spinal cord ameliorates bladder irritation in rat cystitis models. BJU Int 104:1531–1537

    PubMed  CAS  Google Scholar 

  • Mulugeta E, El-Bakri N, Karlsson E, Elhassan A, Adem A (2003) Loss of muscarinic M4 receptors in spinal cord of arthritic rats: implications for a role of M4 receptors in pain response. Brain Res 982:284–287

    PubMed  CAS  Google Scholar 

  • Naguib M, Yaksh TL (1994) Antinociceptive effects of spinal cholinesterase inhibition and isobolographic analysis of the interaction with mu and alpha 2 receptor systems. Anesthesiology 80:1338–1348

    PubMed  CAS  Google Scholar 

  • Naguib M, Yaksh TL (1997) Characterization of muscarinic receptor subtypes that mediate antinociception in the rat spinal cord. Anesth Analg 85:847–853

    PubMed  CAS  Google Scholar 

  • National Health and Nutrition Examination Survey. (NHANES), 1999-2004. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Questionnaire (or Examination Protocol, or Laboratory Protocol). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2004 http://www.cdc.gov/nchs/nhanes.htm

  • Obata H, Li X, Eisenach JC (2005) alpha2-Adrenoceptor activation by clonidine enhances stimulation-evoked acetylcholine release from spinal cord tissue after nerve ligation in rats. Anesthesiology 102:657–662

    PubMed  CAS  Google Scholar 

  • Oliveira MA, Prado WA (1994) Antinociception and behavioral manifestations induced by intracerebroventricular or intra-amygdaloid administration of cholinergic agonists in the rat. Pain 57:383–391

    PubMed  CAS  Google Scholar 

  • Paalzow G, Paalzow L (1975) Antinociceptive action of oxotremorine and regional turnover of rat brain noradrenaline, dopamine and 5-HT. Eur J Pharmacol 31(2):261–272

    PubMed  CAS  Google Scholar 

  • Pan HL, Chen SR, Eisenach JC (1999) Intrathecal clonidine alleviates allodynia in neuropathic rats: interaction with spinal muscarinic and nicotinic receptors. Anesthesiology 90:509–514

    PubMed  CAS  Google Scholar 

  • Pan HL, Wu ZZ, Zhou HY, Chen SR, Zhang HM, Li DP (2008) Modulation of pain transmission by G-protein-coupled receptors. Pharmacol Ther 117:141–161

    PubMed  CAS  Google Scholar 

  • Papaioannou M, Skapinakis P, Damigos D, Mavreas V, Broumas G, Palgimesi A (2009) The role of catastrophizing in the prediction of postoperative pain. Pain Med 10:1452–1459

    PubMed  Google Scholar 

  • Pellicer F, Ortega-Legaspi JM, Lopez-Avila A, Coffeen U, Jaimes O (2010) Dopamine pathways and receptors in nociception and pain. In: Beaulieu P, Lussier D, Porecca F, Dickenson AH (eds) Pharmacology of pain, 1st edn. IASP, Seattle, WA

    Google Scholar 

  • Pinardi G, Sierralta F, Miranda HF (2003) Atropine reverses the antinociception of nonsteroidal anti-inflammatory drugs in the tail-flick test of mice. Pharmacol Biochem Behav 74:603–608

    PubMed  CAS  Google Scholar 

  • Popping DM, Zahn PK, Van Aken HK, Dasch B, Boche R, Pogatzki-Zahn EM (2008) Effectiveness and safety of postoperative pain management: a survey of 18 925 consecutive patients between 1998 and 2006 (2nd revision): a database analysis of prospectively raised data. Br J Anaesth 101:832–840

    PubMed  CAS  Google Scholar 

  • Prado WA, Segalla DK (2004) Antinociceptive effects of bethanechol or dimethylphenylpiperazinium in models of phasic or incisional pain in rats. Brain Res 1018:272–282

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    PubMed  CAS  Google Scholar 

  • Ross VH, Pan PH, Owen MD, Seid MH, Harris L, Clyne B, Voltaire M, Eisenach JC (2009) Neostigmine decreases bupivacaine use by patient-controlled epidural analgesia during labor: a randomized controlled study. Anesth Analg 109:524–531

    PubMed  CAS  Google Scholar 

  • Schappert SM (1994) National ambulatory medical care survey: 1992 summary. Adv Data 253:1–20

    PubMed  Google Scholar 

  • Schechtmann G, Song Z, Ultenius C, Meyerson BA, Linderoth B (2008) Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain 139:136–145

    PubMed  CAS  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    PubMed  CAS  Google Scholar 

  • Shannon HE, Sheardown MJ, Bymaster FP, Calligaro DO, Delapp NW, Gidda J, Mitch CH, Sawyer BD, Stengel PW, Ward JS, Wong DT, Olesen PH, Suzdak PD, Sauerberg P, Swedberg MD (1997a) Pharmacology of butylthio[2.2.2] (LY297802/NNC11-1053): a novel analgesic with mixed muscarinic receptor agonist and antagonist activity. J Pharmacol Exp Ther 281:884–894

    PubMed  CAS  Google Scholar 

  • Shannon HE, Womer DE, Bymaster FP, Calligaro DO, DeLapp NC, Mitch CH, Ward JS, Whitesitt CA, Swedberg MD, Sheardown MJ, Fink-Jensen A, Olesen PH, Rimvall K, Sauerberg P (1997b) In vivo pharmacology of butylthio[2.2.2] (LY297802/NNC11-1053), an orally acting antinociceptive muscarinic agonist. Life Sci 60:969–976

    PubMed  CAS  Google Scholar 

  • Shannon HE, Jones CK, Li DL, Peters SC, Simmons RM, Iyengar S (2001) Antihyperalgesic effects of the muscarinic receptor ligand vedaclidine in models involving central sensitization in rats. Pain 93:221–227

    PubMed  CAS  Google Scholar 

  • Shapiro MS, Gomeza J, Hamilton SE, Hille B, Loose MD, Nathanson NM, Roche JP, Wess J (2001) Identification of subtypes of muscarinic receptors that regulate Ca2+ and K+ channel activity in sympathetic neurons. Life Sci 68:2481–2487

    PubMed  CAS  Google Scholar 

  • Sheardown MJ, Shannon HE, Swedberg MD, Suzdak PD, Bymaster FP, Olesen PH, Mitch CH, Ward JS, Sauerberg P (1997) M1 receptor agonist activity is not a requirement for muscarinic antinociception. J Pharmacol Exp Ther 281:868–875

    PubMed  CAS  Google Scholar 

  • Song Z, Meyerson BA, Linderoth B (2008) Muscarinic receptor activation potentiates the effect of spinal cord stimulation on pain-related behavior in rats with mononeuropathy. Neurosci Lett 436:7–12

    PubMed  CAS  Google Scholar 

  • Spinella M, Znamensky V, Moroz M, Ragnauth A, Bodnar RJ (1999) Actions of NMDA and cholinergic receptor antagonists in the rostral ventromedial medulla upon beta-endorphin analgesia elicited from the ventrolateral periaqueductal gray. Brain Res 829:151–159

    PubMed  CAS  Google Scholar 

  • Steen KH, Reeh PW (1993) Actions of cholinergic agonists and antagonists on sensory nerve endings in rat skin, in vitro. J Neurophysiol 70:397–405

    PubMed  CAS  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    PubMed  CAS  Google Scholar 

  • Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R (2003) Lost productive time and cost due to common pain conditions in the US workforce. JAMA 290:2443–2454

    PubMed  CAS  Google Scholar 

  • Sullivan NR, Leventhal L, Harrison J, Smith VA, Cummons TA, Spangler TB, Sun SC, Lu P, Uveges AJ, Strassle BW, Piesla MJ, Ramdass R, Barry A, Schantz J, Adams W, Whiteside GT, Adedoyin A, Jones PG (2007) Pharmacological characterization of the muscarinic agonist (3R,4R)-3-(3-hexylsulfanyl-pyrazin-2-yloxy)-1-aza-bicyclo[2.2.1]heptane (WAY-132983) in in vitro and in vivo models of chronic pain. J Pharmacol Exp Ther 322:1294–1304

    PubMed  CAS  Google Scholar 

  • Swedberg MD, Sheardown MJ, Sauerberg P, Olesen PH, Suzdak PD, Hansen KT, Bymaster FP, Ward JS, Mitch CH, Calligaro DO, Delapp NW, Shannon HE (1997) Butylthio[2.2.2] (NNC 11-1053/LY297802): an orally active muscarinic agonist analgesic. J Pharmacol Exp Ther 281:876–883

    PubMed  CAS  Google Scholar 

  • Takasu K, Honda M, Ono H, Tanabe M (2006) Spinal alpha(2)-adrenergic and muscarinic receptors and the NO release cascade mediate supraspinally produced effectiveness of gabapentin at decreasing mechanical hypersensitivity in mice after partial nerve injury. Br J Pharmacol 148:233–244

    PubMed  CAS  Google Scholar 

  • Tata AM (2008) Muscarinic acetylcholine receptors: new potential therapeutic targets in antinociception and in cancer therapy. Recent Pat CNS Drug Discov 3:94–103

    PubMed  CAS  Google Scholar 

  • Tata AM, Vilaro MT, Mengod G (2000) Muscarinic receptor subtypes expression in rat and chick dorsal root ganglia. Brain Res Mol Brain Res 82:1–10

    PubMed  CAS  Google Scholar 

  • Tayebati SK, El-Assouad D, Ricci A, Amenta F (2002) Immunochemical and immunocytochemical characterization of cholinergic markers in human peripheral blood lymphocytes. J Neuroimmunol 132:147–155

    PubMed  CAS  Google Scholar 

  • Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J (2003) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2- and M4-receptor-deficient mice. Br J Pharmacol 138:469–480

    PubMed  CAS  Google Scholar 

  • Trendelenburg AU, Meyer A, Wess J, Starke K (2005) Distinct mixtures of muscarinic receptor subtypes mediate inhibition of noradrenaline release in different mouse peripheral tissues, as studied with receptor knockout mice. Br J Pharmacol 145:1153–1159

    PubMed  CAS  Google Scholar 

  • Valant C, Sexton PM, Christopoulos A (2009) Orthosteric/allosteric bitopic ligands: going hybrid at GPCRs. Mol Interv 9:125–135

    PubMed  CAS  Google Scholar 

  • Van de Velde M, Berends N, Kumar A, Devroe S, Devlieger R, Vandermeersch E, De Buck F (2009) Effects of epidural clonidine and neostigmine following intrathecal labour analgesia: a randomised, double-blind, placebo-controlled trial. Int J Obstet Anesth 18:207–214

    PubMed  Google Scholar 

  • Wamsley JK, Zarbin MA, Kuhar MJ (1981) Muscarinic cholinergic receptors flow in the sciatic nerve. Brain Res 217:155–161

    PubMed  CAS  Google Scholar 

  • Wanat MJ, Willuhn I, Clark JJ, Phillips PE (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev 2:195–213

    PubMed  CAS  Google Scholar 

  • Wang XL, Zhang HM, Li DP, Chen SR, Pan HL (2006) Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats. J Physiol 571:403–413

    PubMed  CAS  Google Scholar 

  • Wanke E, Ferroni A, Malgaroli A, Ambrosini A, Pozzan T, Meldolesi J (1987) Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci USA 84:4313–4317

    PubMed  CAS  Google Scholar 

  • Wei J, Walton EA, Milici A, Buccafusco JJ (1994) m1-m5 muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. J Neurochem 63:815–821

    PubMed  CAS  Google Scholar 

  • Wess J (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci 24:414–420

    PubMed  CAS  Google Scholar 

  • Wess J, Duttaroy A, Gomeza J, Zhang W, Yamada M, Felder CC, Bernardini N, Reeh PW (2003a) Muscarinic receptor subtypes mediating central and peripheral antinociception studied with muscarinic receptor knockout mice: a review. Life Sci 72:2047–2054

    PubMed  CAS  Google Scholar 

  • Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M (2003b) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors Channels 9:279–290

    PubMed  CAS  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1998) Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 77:59–79

    PubMed  CAS  Google Scholar 

  • Womer DE, Shannon HE (2000) Reversal of pertussis toxin-induced thermal allodynia by muscarinic cholinergic agonists in mice. Neuropharmacology 39:2499–2504

    PubMed  CAS  Google Scholar 

  • Xu Z, Tong C, Pan HL, Cerda SE, Eisenach JC (1997) Intravenous morphine increases release of nitric oxide from spinal cord by an alpha-adrenergic and cholinergic mechanism. J Neurophysiol 78:2072–2078

    PubMed  CAS  Google Scholar 

  • Yaksh TL, Dirksen R, Harty GJ (1985) Antinociceptive effects of intrathecally injected cholinomimetic drugs in the rat and cat. Eur J Pharmacol 117:81–88

    PubMed  CAS  Google Scholar 

  • Zhang HM, Li DP, Chen SR, Pan HL (2005) M2, M3, and M4 receptor subtypes contribute to muscarinic potentiation of GABAergic inputs to spinal dorsal horn neurons. J Pharmacol Exp Ther 313:697–704

    PubMed  CAS  Google Scholar 

  • Zhang HM, Chen SR, Matsui M, Gautam D, Wess J, Pan HL (2006) Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice. Mol Pharmacol 69:1048–1055

    PubMed  CAS  Google Scholar 

  • Zhang HM, Chen SR, Pan HL (2007a) Regulation of glutamate release from primary afferents and interneurons in the spinal cord by muscarinic receptor subtypes. J Neurophysiol 97:102–109

    PubMed  CAS  Google Scholar 

  • Zhang HM, Zhou HY, Chen SR, Gautam D, Wess J, Pan HL (2007b) Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice. J Pharmacol Exp Ther 323:963–971

    PubMed  CAS  Google Scholar 

  • Zhao P, Barr TP, Hou Q, Dib-Hajj SD, Black JA, Albrecht PJ, Petersen K, Eisenberg E, Wymer JP, Rice FL, Waxman SG (2008) Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain. Pain 139:90–105

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis F. Fiorino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiorino, D.F., Garcia-Guzman, M. (2012). Muscarinic Pain Pharmacology: Realizing the Promise of Novel Analgesics by Overcoming Old Challenges. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_9

Download citation

Publish with us

Policies and ethics