Skip to main content

Muscarinic Receptor Trafficking

  • Chapter
  • First Online:
Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

Knowledge of the mechanisms responsible for the trafficking of neurotransmitter receptors away from the cell surface is of obvious importance in understanding what regulates their expression and function. This chapter will focus on the mechanisms responsible for the internalization and degradation of muscarinic receptors. There are both receptor subtype-specific and cell-type specific differences in muscarinic receptor trafficking. Studies on muscarinic receptor trafficking both in cells in culture and in vivo will be described, and the potential physiological consequences of this trafficking will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RG, Goldstein JL, Brown MS (1977) A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature 270:695–699

    Article  PubMed  CAS  Google Scholar 

  • Avissar S, Amitai G, Sokolovsky M (1983) Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc Natl Acad Sci USA 80:156–159

    Article  PubMed  CAS  Google Scholar 

  • Beltrame SP, Auger SR, Bilder CR et al (2011) Modulation of M(2) muscarinic receptor-receptor interaction by immunoglobulin G antibodies from Chagas’ disease patients. Clin Exp Immunol 164:170–179

    Article  PubMed  CAS  Google Scholar 

  • Ben-Barak J, Dudai Y (1980) Scopolamine induces an increase in muscarinic receptor level in rat hippocampus. Brain Res 193:309–313

    Article  PubMed  CAS  Google Scholar 

  • Bendor J, Lizardi-Ortiz JE, Westphalen RI et al (2010) AGAP1/AP-3-dependent endocytic recycling of M5 muscarinic receptors promotes dopamine release. EMBO J 29:2813–2826

    Article  PubMed  CAS  Google Scholar 

  • Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:245–251

    Article  PubMed  CAS  Google Scholar 

  • Boeuf J, Trigo JM, Moreau PH et al (2009) Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice. Eur J Neurosci 30:860–868

    Article  PubMed  Google Scholar 

  • Bogatkewitsch GS, Lenz W, Jakobs KH et al (1996) Receptor internalization delays m4 muscarinic acetylcholine receptor resensitization at the plasma membrane. Mol Pharmacol 5:424–429

    Google Scholar 

  • Bouvier M, Hausdorff WP, De Blasi A et al (1988) Removal of phosphorylation sites from the beta 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 333:370–373

    Article  PubMed  CAS  Google Scholar 

  • Boyer SB, Clancy SM, Terunuma M et al (2009) Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J Neurosci 29:15796–15809

    Article  PubMed  CAS  Google Scholar 

  • Budd DC, Rae A, Tobin AB (1999) Activation of the mitogen-activated protein kinase pathway by a Gq/11-coupled muscarinic receptor is independent of receptor internalization. J Biol Chem 274:12355–12360

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Pearce B (1981) Muscarinic acetylcholine receptors regulation and protein phosphorylation in primary cultures of rat cerebellum. Brain Res 254:55–63

    Article  CAS  Google Scholar 

  • Calebiro D, Nikolaev VO, Persani L et al (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228

    Article  PubMed  CAS  Google Scholar 

  • Claing A, Perry SJ, Achiriloaie M et al (2000) Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc Natl Acad Sci USA 97:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Clancy SM, Boyer SB, Slesinger PA (2007) Coregulation of natively expressed pertussis toxin-sensitive muscarinic receptors with G-protein-activated potassium channels. J Neurosci 27:6388–6399

    Article  PubMed  CAS  Google Scholar 

  • Costa LG, Murphy SD (1985) Characterization of muscarinic cholinergic receptors in the submandibular gland of the rat. J Auton Nerv Syst 13:287–301

    Article  PubMed  CAS  Google Scholar 

  • Daaka Y, Luttrell LM, Ahn S et al (1998) Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem 273:685–688

    Article  PubMed  CAS  Google Scholar 

  • Davis CN, Bradley SR, Schiffer HH et al (2009) Differential regulation of muscarinic M1 receptors by orthosteric and allosteric ligands. BMC Pharmacol 9:14

    Article  PubMed  CAS  Google Scholar 

  • Davis AA, Heilman CJ, Brady AE et al (2010) Differential effects of allosteric M(1) muscarinic acetylcholine receptor agonists on receptor activation, arrestin 3 recruitment, and receptor downregulation. ACS Chem Neurosci 1:542–551

    Article  PubMed  CAS  Google Scholar 

  • Dawson RM, Jarrott B (1981) Response of muscarinic cholinoceptors of guinea pig brain and ileum to chronic administration of carbamate or organophosphate cholinesterase inhibitors. Biochem Pharmacol 30:2365–2368

    Article  PubMed  CAS  Google Scholar 

  • Decossas M, Bloch B, Bernard V (2003) Trafficking of the muscarinic m2 autoreceptor in cholinergic basalocortical neurons in vivo: differential regulation of plasma membrane receptor availability and intraneuronal localization in acetylcholinesterase-deficient and -inhibited mice. J Comp Neurol 462:302–314

    Article  PubMed  CAS  Google Scholar 

  • Delaney KA, Murph MM, Brown LM et al (2002) Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis. J Biol Chem 277:33439–33446

    Article  PubMed  CAS  Google Scholar 

  • Dessy C, Kelly RA, Balligand JL et al (2000) Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling. EMBO J 19:4272–4280

    Article  PubMed  CAS  Google Scholar 

  • Devi LA (2001) Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci 22:532–537

    Article  PubMed  CAS  Google Scholar 

  • Di Guglielmo GM, Le Roy C, Goodfellow AF et al (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421

    Article  PubMed  CAS  Google Scholar 

  • Feigenbaum P, El-Fakahany EE (1985) Regulation of muscarinic cholinergic receptor density in neuroblastoma cells by brief exposure to agonist: possible involvement in desensitization of receptor function. J Pharmacol Exp Ther 233:134–140

    PubMed  CAS  Google Scholar 

  • Ferguson SSG, Downey WE III, Colapietro AM et al (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Smith TW, Michel T et al (1997) Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272:17744–17748

    Article  PubMed  CAS  Google Scholar 

  • Galper JB, Smith TW (1980) Agonist and guanine nucleotide modulation of muscarinic cholinergic receptors in cultured heart cells. J Biol Chem 255:9571–9579

    PubMed  CAS  Google Scholar 

  • Galper JB, Dziekan LC, Miura DS et al (1982a) Agonist-induced changes in the modulation of K+ permeability and beating rate by muscarinic agonists in cultured heart cells. J Gen Physiol 80:231–256

    Article  PubMed  CAS  Google Scholar 

  • Galper JB, Dziekan LC, O’Hara DS et al (1982b) The biphasic response of muscarinic cholinergic receptors in cultured heart cells to agonists. J Biol Chem 257:10344–10356

    PubMed  CAS  Google Scholar 

  • Gazit H, Silman I, Dudai Y (1979) Administration of an organophosphate causes a decrease in muscarinic receptor levels in rat brain. Brain Res 174:351–356

    Article  PubMed  CAS  Google Scholar 

  • Goin JC, Nathanson NM (2006) Quantitative analysis of muscarinic acetylcholine receptor homo- and heterodimerization in live cells: regulation of receptor down-regulation by heterodimerization. J Biol Chem 281:5416–5425

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Schlador ML, Shapiro RA et al (1996) Identification of a region required for subtype-specific agonist-induced sequestration of the m2 muscarinic acetylcholine receptor. J Biol Chem 271:4215–4222

    Article  PubMed  CAS  Google Scholar 

  • Halvorsen SW, Nathanson NM (1981) In vivo regulation of muscarinic acetylcholine receptor number and function in embryonic chick heart. J Biol Chem 256:7941–7948

    PubMed  CAS  Google Scholar 

  • Harden TK, Petch LA, Traynelis SF et al (1985) Agonist-induced alteration in the membrane form of muscarinic cholinergic receptors. J Biol Chem 260:13060–13066

    PubMed  CAS  Google Scholar 

  • Hirschberg BT, Schimerlik MI (1994) A kinetic model for oxotremorine M binding to recombinant porcine m2 muscarinic receptors expressed in Chinese hamster ovary cells. J Biol Chem 269:26127–26135

    PubMed  CAS  Google Scholar 

  • Hoefen RJ, Berk BC (2006) The multifunctional GIT family of proteins. J Cell Sci 119:1469–1475

    Article  PubMed  CAS  Google Scholar 

  • Hunter DD, Nathanson NM (1984) Decreased physiological sensitivity mediated by newly synthesized muscarinic acetylcholine receptors in the embryonic chick heart. Proc Natl Acad Sci USA 81:3582–3586

    Article  PubMed  CAS  Google Scholar 

  • Hunter DD, Nathanson NM (1986) Biochemical and physical analyses of newly synthesized muscarinic acetylcholine receptors in cultured embryonic chicken cardiac cells. J Neurosci 6:3739–3748

    PubMed  CAS  Google Scholar 

  • Jones KT, Echeverry M, Mosser VA et al (2006) Agonist mediated internalization of M2 mAChR is beta-arrestin-dependent. J Mol Signal 1:7

    Article  PubMed  CAS  Google Scholar 

  • Klein WL, Nathanson NM, Nirenberg M (1979) Muscarinic acetylcholine receptor regulation by accelerated rate of receptor loss. Biochem Biophys Res Commun 90:506–512

    Article  PubMed  CAS  Google Scholar 

  • Koenig JA, Edwardson JM (1996) Intracellular trafficking of the muscarinic acetylcholine receptor: importance of subtype and cell type. Mol Pharmacol 49:351–359

    PubMed  CAS  Google Scholar 

  • Kubo Y, Tateyama M (2005) Towards a view of functioning dimeric metabotropic receptors. Curr Opin Neurobiol 15:289–295

    Article  PubMed  CAS  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J et al (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96(7):3712–3717

    Article  PubMed  CAS  Google Scholar 

  • Laporte SA, Oakley RH, Holt JA et al (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275:23120–23126

    Article  PubMed  CAS  Google Scholar 

  • Lee KB, Pals-Rylaarsdam R, Benovic JL et al (1998) Arrestin-independent internalization of the m1, m3, and m4 subtypes of muscarinic cholinergic receptors. J Biol Chem 273:12967–12972

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Rajagopal K, Whalen EJ (2006) New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 24:643–652

    Article  PubMed  CAS  Google Scholar 

  • Leiros CP, Sterin-Borda L, Borda ES et al (1997) Desensitization and sequestration of human m2 muscarinic acetylcholine receptors by autoantibodies from patients with Chagas’ disease. J Biol Chem 272:12989–12993

    Article  PubMed  CAS  Google Scholar 

  • Li B, Duysen EG, Volpicelli-Daley LA et al (2003) Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacol Biochem Behav 74:977–986

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Lefkowitz RJ, Caron MG et al (1989) Inhibition of beta-adrenergic receptor kinase prevents rapid homologous desensitization of beta 2-adrenergic receptors. Proc Natl Acad Sci USA 86:3011–3015

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Busillo JM, Benovic JL (2008) M3 muscarinic acetylcholine receptor-mediated signaling is regulated by distinct mechanisms. Mol Pharmacol 74:338–347

    Article  PubMed  CAS  Google Scholar 

  • Maggio R, Vogel Z, Wess J (1993) Reconstitution of functional muscarinic receptors by co-expression of amino- and carboxyl-terminal receptor fragments. FEBS Lett 319(1–2):195–200

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Ann N Y Acad Sci 1003:1–11

    Article  PubMed  CAS  Google Scholar 

  • Maloteaux JM, Gossuin A, Pauwels PJ et al (1983) Short-term disappearance of muscarinic cell surface receptors in carbachol-induced desensitization. FEBS Lett 156:103–107

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Artman LD, Patinkin DM et al (1981) Cholinergic adaptations to chronic oxotremorine infusion. J Pharmacol Exp Ther 218:337–343

    PubMed  CAS  Google Scholar 

  • McClatchy DB, Knudsen CR, Clark BF et al (2002) Novel interaction between the M4 muscarinic acetylcholine receptor and elongation factor 1A2. J Biol Chem 277:29268–29274

    Article  PubMed  CAS  Google Scholar 

  • McClatchy DB, Fang G, Levey AI (2006) Elongation factor 1A family regulates the recycling of the M4 muscarinic acetylcholine receptor. Neurochem Res 31:975–988

    Article  PubMed  CAS  Google Scholar 

  • Mendes HF, van der Spuy J, Chapple JP et al (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  PubMed  CAS  Google Scholar 

  • Meyer MR, Gainer MW, Nathanson NM (1982) In vivo regulation of muscarinic cholinergic receptors in embryonic chick brain. Mol Pharmacol 21:280–286

    PubMed  CAS  Google Scholar 

  • Miaczynska M, Bar-Sagi D (2010) Signaling endosomes: seeing is believing. Curr Opin Cell Biol 22:535–540

    Article  PubMed  CAS  Google Scholar 

  • Montiel M, Quesada J, Jimenez E (2004) Activation of second messenger-dependent protein kinases induces muscarinic acetylcholine receptor desensitization in rat thyroid epithelial cells. Mol Cell Endocrinol 223:35–41

    Article  PubMed  CAS  Google Scholar 

  • Moser E, Kargl J, Whistler JL et al (2010) G protein-coupled receptor-associated sorting protein 1 regulates the postendocytic sorting of seven-transmembrane-spanning G protein-coupled receptors. Pharmacology 86:22–29

    Article  PubMed  CAS  Google Scholar 

  • Mosser VA, Jones KT, Hoffman KM et al (2008) Differential role of beta-arrestin ubiquitination in agonist-promoted down-regulation of M1 vs M2 muscarinic acetylcholine receptors. J Mol Signal 3:20

    Article  PubMed  CAS  Google Scholar 

  • Mundell SJ, Benovic JL (2000) Selective regulation of endogenous G protein-coupled receptors by arrestins in HEK293 cells. J Biol Chem 275:12900–12908

    Article  PubMed  CAS  Google Scholar 

  • Mundell SJ, Loudon RP, Benovic JL (1999) Characterization of G protein-coupled receptor regulation in antisense mRNA-expressing cells with reduced arrestin levels. Biochemistry 38:8723–8732

    Article  PubMed  CAS  Google Scholar 

  • Nathanson NM (1989) Regulation and development of muscarinic acetylcholine number and function. In: Brown JH (ed) The muscarinic receptors. Humana, Clifton, NJ

    Google Scholar 

  • Nathanson NM (2008) Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 119:33–43

    Article  PubMed  CAS  Google Scholar 

  • Nathanson NM, Klein WL, Nirenberg M (1978) Regulation of adenylate cyclase activity mediated by muscarinic acetylcholine receptors. Proc Natl Acad Sci USA 75:1788–1791

    Article  PubMed  CAS  Google Scholar 

  • Nathanson NM, Holttum J, Hunter DD et al (1984) Partial agonist activity of oxotremorine at muscarinic acetylcholine receptors in the embryonic chick heart. J Pharmacol Exp Ther 229:455–458

    PubMed  CAS  Google Scholar 

  • Nussinovitch U, Shoenfeld Y (2011) The diagnostic and clinical significance of anti-muscarinic receptor autoantibodies. Clin Rev Allerg Immunol. doi:10.1007/s12016-010-8235-x

  • Olianas MC, Onali P, Schwartz JP et al (1984) The muscarinic receptor adenylate cyclase complex of rat striatum: desensitization following chronic inhibition of acetylcholinesterase activity. J Neurochem 42:1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Pals-Rylaarsdam R, Hosey MM (1997) Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor. J Biol Chem 272:14152–14158

    Article  PubMed  CAS  Google Scholar 

  • Pals-Rylaarsdam R, Xu Y, Witt-Enderby P et al (1995) Desensitization and internalization of the m2 muscarinic acetylcholine receptor are directed by independent mechanisms. J Biol Chem 270:29004–29011

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Zhao J, Gu QH et al (2010) Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses. Hippocampus 20:646–658

    PubMed  CAS  Google Scholar 

  • Pierce KL, Maudsley S, Daaka Y et al (2000) Role of endocytosis in the activation of the extracellular signal-regulated kinase cascade by sequestering and nonsequestering G protein-coupled receptors. Proc Natl Acad Sci USA 97:1489–1494

    Article  PubMed  CAS  Google Scholar 

  • Pippig S, Andexinger S, Lohse MJ (1995) Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 47:666–676

    PubMed  CAS  Google Scholar 

  • Potter LT, Ballesteros LA, Bichajian LH et al (1991) Evidence of paired M2 muscarinic receptors. Mol Pharmacol 39:211–221

    PubMed  CAS  Google Scholar 

  • Poulin B, Butcher A, McWilliams P et al (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci USA 107:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Rehavi M, Ramot O, Yavetz B et al (1980) Amitripyline: long-term treatment elevates alpha-adrenergic and muscarinic receptor binding in mouse brain. Brain Res 194:443–453

    Article  PubMed  CAS  Google Scholar 

  • Reiner C, Nathanson NM (2008) The internalization of the M2 and M4 muscarinic acetylcholine receptors involves distinct subsets of small G-proteins. Life Sci 82:718–727

    Article  PubMed  CAS  Google Scholar 

  • Reiner CL, McCullar J, Kow R et al (2010) RACK1 associates with muscarinic receptors and regulates M2 receptor trafficking. PLoS One 5(10):e13517

    Article  PubMed  CAS  Google Scholar 

  • Roseberry AG, Hosey MM (2001) Internalization of the M2 muscarinic acetylcholine receptor proceeds through an atypical pathway in HEK293 cells that is independent of clathrin and caveolae. J Cell Sci 114:739–746

    PubMed  CAS  Google Scholar 

  • Roseberry, AG, Hosey, MM (1999). Trafficking of M2 muscarinic acetylcholine receptors. J Biol Chem 274:33671–33676.

    Article  PubMed  CAS  Google Scholar 

  • Scarselli M, Donaldson JG (2009) Constitutive internalization of G protein-coupled receptors and G proteins via clathrin-independent endocytosis. J Biol Chem 284:3577–3585

    Article  PubMed  CAS  Google Scholar 

  • Scherer NM, Nathanson NM (1990) Differential regulation by agonist and phorbol ester of cloned m1 and m2 muscarinic receptors in mouse Y1 adrenal cells and in Y1 cells deficient in cAMP-dependent protein kinase. Biochemistry 29:8475–8483

    Article  PubMed  CAS  Google Scholar 

  • Schlador ML, Nathanson NM (1997) Synergistic regulation of m2 muscarinic acetylcholine receptor desensitization and sequestration by G protein-coupled receptor kinase-2 and beta-arrestin-1. J Biol Chem 272:18882–18890

    Article  PubMed  CAS  Google Scholar 

  • Schlador ML, Grubbs R, Nathanson NM (2000) Multiple topological domains mediate subtype-specific internalization of the M2 muscarinic acetylcholine receptor. J Biol Chem 275:23295–23302

    Article  PubMed  CAS  Google Scholar 

  • Schmid CL, Bohn LM (2009) Physiological and pharmacological implications of beta-arrestin regulation. Pharmacol Ther 121:285–293

    Article  PubMed  CAS  Google Scholar 

  • Shifrin GS, Klein WL (1980) Regulation of muscarinic acetylcholine receptor concentration in cloned neuroblastoma cells. J Neurochem 34:993–999

    Article  PubMed  CAS  Google Scholar 

  • Shui Z, Yamanushi TT, Boyett MR (2001) Evidence of involvement of GIRK1/GIRK4 in long-term desensitization of cardiac muscarinic K+ channels. Am J Physiol Heart Circ Physiol 280:H2554–H2562

    PubMed  CAS  Google Scholar 

  • Siman RG, Klein WL (1979) Cholinergic activity regulates muscarinic receptors in central nervous system cultures. Proc Natl Acad Sci USA 76:4141–4145

    Article  PubMed  CAS  Google Scholar 

  • Siman RG, Klein WL (1981) Specificity of muscarinic acetylcholine receptor regulation by receptor activity. J Neurochem 37:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Simonin F, Karcher P, Boeuf JJ et al (2004) Identification of a novel family of G protein-coupled receptor associated sorting proteins. J Neurochem 89:766–775

    Article  PubMed  CAS  Google Scholar 

  • Takeyasu K, Uchida S, Lai RT et al (1981) Regulation of muscarinic acetylcholine receptors and contractility of guinea pig vas deferens. Life Sci 28:527–540

    Article  PubMed  CAS  Google Scholar 

  • Taylor JE, El-Fakahany E, Richelson E (1979) Long-term regulation of muscarinic acetylcholine receptors on cultured nerve cells. Life Sci 25:2181–2187

    Article  PubMed  CAS  Google Scholar 

  • Taylor JE, Yaksh TL, Richelson E (1982) Agonist regulation of muscarinic acetylcholine receptors in rat spinal cord. J Neurochem 39:521–524

    Article  PubMed  CAS  Google Scholar 

  • Thomas RL, Mistry R, Langmead CJ et al (2008) G protein coupling and signaling pathway activation by m1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J Pharmacol Exp Ther 327:365–374

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LM, Lameh J (1998) Antibody to epitope tag induces internalization of human muscarinic subtype 1 receptor. J Neurochem 70:113–119

    Article  PubMed  CAS  Google Scholar 

  • Tsuga H, Kameyama K, Haga T (1998a) Desensitization of human muscarinic acetylcholine receptor m2 subtypes is caused by their sequestration/internalization. J Biochem 124:863–868

    PubMed  CAS  Google Scholar 

  • Tsuga H, Kameyama K, Haga T et al (1998b) Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. Role of third intracellular m2 loop and G protein-coupled receptor kinase 2. J Biol Chem 273:5323–5330

    Article  PubMed  CAS  Google Scholar 

  • van Koppen CJ (2001) Multiple pathways for the dynamin-regulated internalization of muscarinic acetylcholine receptors. Biochem Soc Trans 29:505–508

    Article  PubMed  Google Scholar 

  • Vögler O, Bogatkewitsch GS, Wriske C et al (1998) Receptor subtype-specific regulation of muscarinic acetylcholine receptor sequestration by dynamin. Distinct sequestration of m2 receptors. J Biol Chem 273:12155–12160

    Article  PubMed  Google Scholar 

  • Vögler O, Krummenerl P, Schmidt M et al (1999a) RhoA-sensitive trafficking of muscarinic acetylcholine receptors. J Pharmacol Exp Ther 288:36–42

    PubMed  Google Scholar 

  • Vögler O, Nolte B, Voss M et al (1999b) Regulation of muscarinic acetylcholine receptor sequestration and function by beta-arrestin. J Biol Chem 274:12333–12338

    Article  PubMed  Google Scholar 

  • Volpicelli LA, Lah JJ, Levey AI (2001) Rab5-dependent trafficking of the m4 muscarinic acetylcholine receptor to the plasma membrane, early endosomes, and multivesicular bodies. J Biol Chem 276:47590–47598

    Article  PubMed  CAS  Google Scholar 

  • Volpicelli LA, Lah JJ, Fang G et al (2002) Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor. J Neurosci 22:9776–9784

    PubMed  CAS  Google Scholar 

  • Volpicelli-Daley LA, Duysen EG, Lockridge O et al (2003a) Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Ann Neurol 53:788–796

    Article  PubMed  CAS  Google Scholar 

  • Volpicelli-Daley LA, Hrabovska A, Duysen EG et al (2003b) Altered striatal function and muscarinic cholinergic receptors in acetylcholinesterase knockout mice. Mol Pharmacol 64:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Werbonat Y, Kleutges N, Jakobs KH et al (2000) Essential role of dynamin in internalization of M2 muscarinic acetylcholine and angiotensin AT1A receptors. J Biol Chem 275:21969–21974

    Article  PubMed  CAS  Google Scholar 

  • Westlind A, Grynfarh M, Hedlund B et al (1981) Muscarinic supersensitivity induced by septal lesions or chronic atropine treatment. Brain Res 225:131–141

    Article  PubMed  CAS  Google Scholar 

  • Wise BC, Shoji M, Kuo JF (1980) Decrease or increase in cardiac muscarinic cholinergic receptor number in rats treated with methacholine or atropine. Biochem Biophys Res Commun 92:1136–1142

    Article  PubMed  CAS  Google Scholar 

  • Yu SS, Lefkowitz RJ, Hausdorff WP (1993) Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J Biol Chem 268:337–341

    PubMed  CAS  Google Scholar 

  • Zeng FY, Wess J (1999) Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 274:19487–19497

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Ferguson SS, Barak LS et al (1996) Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 271:18302–18305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil M. Nathanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reiner, C., Nathanson, N.M. (2012). Muscarinic Receptor Trafficking. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_4

Download citation

Publish with us

Policies and ethics