Fundamental Loss of Quantum Coherence from Quantum Gravity

  • Rodolfo Gambini
  • Rafael A. Porto
  • Jorge Pullin
Part of the Fundamental Theories of Physics book series (FTPH, volume 172)


We discuss the fundamental loss of unitarity that appears in quantum mechanics when one uses physically realistic devices to measure time and space. The effect is independent of any interaction with the environment and appears in addition to any usual environmental decoherence. We discuss the conceptual and potential experimental implications of this process of decoherence.


Black Hole Quantum Mechanic Density Matrix Quantum Gravity Pure State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by grants NSF-PHY0650715, and by funds of the Horace C. Hearne Jr. Institute for Theoretical Physics, PEDECIBA (Uruguay), FQXi, the University of California and CCT-LSU.


  1. 1.
    R. Gambini, R. Porto, J. Pullin, Class. Quant. Grav. 21, L51 (2004) [arXiv:gr-qc/0305098]Google Scholar
  2. 2.
    R. Gambini, R. Porto, J. Pullin, New J. Phys. 6, 45 (2004) [arXiv:gr-qc/0402118]Google Scholar
  3. 3.
    R. Gambini, R. Porto, J. Pullin, Braz. J. Phys. 35, 266 (2005) [arXiv:gr-qc/0501027]Google Scholar
  4. 4.
    R. Gambini, R. Porto, J. Pullin, Gen. Rel. Grav. 39, 1143 (2007) [arXiv:gr-qc/0603090]Google Scholar
  5. 5.
    See for instance, J. Ellis, J. Hagelin, D.V. Nanopoulos, M. Srednicki, Nucl. Phys. B241, 381 (1984); T. Banks, M.E. Peskin, L. Susskind, Nucl. Phys. B244, 125 (1984)Google Scholar
  6. 6.
    G.J. Milburn, Phys. Rev. A44, 5401 (1991)Google Scholar
  7. 7.
    I. Egusquiza, L. Garay, J. Raya, Phys. Rev. A59, 3236 (1999) [arXiv:quant-ph/9811009]Google Scholar
  8. 8.
    C. Kiefer, T. Singh, Phys. Rev. D44, 1061 (1991)Google Scholar
  9. 9.
    D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 76, 1796 (1996); M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 76, 1800 (1996); R. Bonifacio, S. Olivares, P. Tombesi, D. Vitali, Phys. Rev. A61, 053802 (2000)Google Scholar
  10. 10.
    E. Wigner, Rev. Mod. Phys. 29, 255 (1957)Google Scholar
  11. 11.
    Y.J. Ng, H. van Dam, Ann. N. Y. Acad. Sci. 755, 579 (1995) [arXiv:hep-th/9406110]; Mod. Phys. Lett. A 9, 335 (1994)Google Scholar
  12. 12.
    Y.J. Ng, H. van Dam, Class. Quant. Grav. 20, 393 (2003) [arXiv:gr-qc/0209021]Google Scholar
  13. 13.
    J.C. Baez, S.J. Olson, Class. Quant. Grav. 19, L121 (2002) [arXiv:gr-qc/0201030]Google Scholar
  14. 14.
    R. Gambini, R.A. Porto, J. Pullin, Phys. Rev. Lett. 93, 240401 (2004) [arXiv:hep-th/0406260]Google Scholar
  15. 15.
    See for instance, A. Andre, A. Sorensen, M. Lukin, Phys. Rev. Lett 92, 230801 (2004) [arXiv:quant-ph/0401130]Google Scholar
  16. 16.
    R. Gambini, R.A. Porto, J. Pullin, Int. J. Mod. Phys. D 15, 2181 (2006) [arXiv:gr-qc/0611148]Google Scholar
  17. 17.
    S. Hawking, Commun. Math. Phys. 43, 199 (1975)Google Scholar
  18. 18.
    See for instance, S. Giddings, L. Thorlacius, in Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, ed. by E. Kolb (World Scientific, Singapore, 1996) [arXiv:astro-ph/9412046]; for more recent references see S.B. Giddings, M. Lippert, [arXiv:hep-th/0402073]; D. Gottesman, and J. Preskill, J. High Energ. Phys. 0403, 026 (2004) [arXiv:hep-th/0311269]Google Scholar
  19. 19.
    N. Iizuka, J. Polchinski, JHEP 0810, 028 (2008) [arXiv:0801.3657 [hep-th]]Google Scholar
  20. 20.
    M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004) [arXiv:quant-ph/0312059]Google Scholar
  21. 21.
    R. Omnès, The interpretation of quantum mechanics, Princeton Series in Physics (Princeton, NJ, 1994)Google Scholar
  22. 22.
    R. Gambini and J. Pullin, Found. Phys. 37, 1074 (2007)Google Scholar
  23. 23.
    R. Gambini, J. Pullin, in Minkowski spacetime, a hundred years later, V. Petkov (ed.), Springer, New York (2010) [arXiv:0801.2564 [gr-qc]]Google Scholar
  24. 24.
    S. Lloyd, Nature. 406, 1047 (2000)Google Scholar
  25. 25.
    N. Margolus, L. Levitin, Physica. D120, 188 (1998)Google Scholar
  26. 26.
    R. Gambini, R. Porto, J. Pullin, in Gravity, Astrophysics and Strings at the Black Sea, ed. by P. Fiziev, M. Todorov (St. Kliment Ohridski Press, Sofia, 2006) [arXiv:quant-ph/0507262]Google Scholar
  27. 27.
    R. Bonifacio, Nuo. Cim. D114, 473 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rodolfo Gambini
    • 1
  • Rafael A. Porto
    • 2
  • Jorge Pullin
    • 3
  1. 1.Instituto de Física, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  3. 3.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations