Open Questions Regarding the Arrow of Time

Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 172)

Abstract

Conceptual problems regarding the arrow of time in classical physics, quantum physics, cosmology, and quantum gravity are discussed. Particular attention is paid to the retardation of various kinds of correlations, the dynamical rle of the quantum indeterminism, and to different concepts of timelessness.

Keywords

Black Hole Loop Quantum Cosmology Microscopic State Copenhagen Interpretation Asymmetric Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.D. Zeh, The Physical Basis of the Direction of Time, 5th edn. (Springer, Berlin, 2007) (cited as TD). See also http://www.time-direction.de
  2. 2.
    H.D. Zeh, Entropy 7(4), 199 (2005)Google Scholar
  3. 3.
    H.D. Zeh, 8(2), 44 (2006), and references thereinGoogle Scholar
  4. 4.
    H. Price, Time’s Arrow & Archimedes’ Point: A View from Nowhen(Oxford University Press, 1996)Google Scholar
  5. 5.
    E. Borel, Le hasard(Alcan, Paris, 1924)Google Scholar
  6. 6.
    C.H. Bennett, Sci. Am. 257, 108 (1987)Google Scholar
  7. 7.
    E. Lubkin, J. Theor. Phys. 26, 523 (1987)Google Scholar
  8. 8.
    D. Lewis, Philosophical Papers, vol. II (Oxford University Press, 1986)Google Scholar
  9. 9.
    J.B. Barbour, Classical Quant. Grav. 11, 2853 (1994)Google Scholar
  10. 10.
    C. Kiefer, H.D. Zeh, Phys. Rev. D51, 4145 (1995)Google Scholar
  11. 11.
    H.D. Zeh, Phys. Lett. A347, 1 (2005); see also C. Kiefer’s contribution to this volumeGoogle Scholar
  12. 12.
    F.J. Dyson, Phys. Rev. 75, 486 (1949)Google Scholar
  13. 13.
    R. Arnowitt, S. Deser, C.W. Misner, in Gravitation – An Introduction to Current Research, ed. by L. Witten. The Dynamics of General Relativity (Wiley, New York, 1962)Google Scholar
  14. 14.
    B.S. DeWitt, Phys. Rev. 160, 1113 (1967)Google Scholar
  15. 15.
    For a review see: C. Kiefer, Quantum Gravity, 2nd edn. (Oxford University Press, 2007)Google Scholar
  16. 16.
    C. Kiefer (2009), arXiv:0909.3767Google Scholar
  17. 17.
    J.J. Halliwell, S.W. Hawking, Phys. Rev. D31, 1777 (1985)Google Scholar
  18. 18.
    H.D. Zeh, Phys. Lett. A116, 9 (1986)Google Scholar
  19. 19.
    H.D. Zeh, A126, 311 (1988)Google Scholar
  20. 20.
    D. Giulini, Phys. Rev. D51, 5630 (1995)Google Scholar
  21. 21.
    T. Banks, Nucl. Phys. B249, 332 (1985)Google Scholar
  22. 22.
    R. Brout, G. Venturi, Phys. Rev. D39, 2436 (1989)Google Scholar
  23. 23.
    C. Kiefer, Phys. Rev. D46, 1658 (1992)Google Scholar
  24. 24.
    M. Bojowald, Gen. Rel. Grav. 35, 1877 (2003)Google Scholar
  25. 25.
    M. Bojowald, Sci. Am., 299, 44 (2008)Google Scholar
  26. 26.
    C. Rovelli (2009), arXiv:0903.3832Google Scholar
  27. 27.
    J.B. Barbour, The End of Time(Weidenfels & Nicolson, London, 1999)Google Scholar
  28. 28.
    R.F. Baierlein, D.H. Sharp, J.A. Wheeler, Phys. Rev. 126, 1864 (1962)Google Scholar
  29. 29.
    J.B. Barbour, B. Bertotti, Proc. R. Soc. London A382, 295 (1982)Google Scholar
  30. 30.
    D.N. Page, W.K. Wootters, Phys. Rev. D27, 2885 (1983)Google Scholar
  31. 31.
    See, for example, C.J. Isham, in Integrable systems, quantum groups, and quantum field theory, ed. by L.A. Ibort, M.A. Rodriguez. (Kluwer, Dordrecht, 1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Universität HeidelbergWaldhilsbachGermany

Personalised recommendations