Design of Fuzzy Logic Controller for DC Motor

  • O. Andrs
  • T. Brezina
  • J. Kovar


This contribution presents a simple and efficient approach to the fuzzy logic controller design and simulation. The proposed controller uses a Sugeno type fuzzy inference system (FIS) which is derived from discrete position state-space controller with an input integrator. The controller design method is based on anfis (adaptive neuro-fuzzy inference system) training routine. It utilizes a combination of the least-squares method and the backpropagation gradient descent method for training FIS membership function parameters to emulate a given training data set. The proposed fuzzy logic controller is used for the position control of a linear actuator which is a part of a Stewart platform.


Membership Function Fuzzy Inference System Parallel Manipulator Fuzzy Logic Controller Linear Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stewart, D.: A platform with six degrees of freedom. In: Proceedings of the Institution of Mechanical Engineers, pp. 371–381 (1965)Google Scholar
  2. 2.
    Gough, V.E., Whitehall, S.G.: Universal tire test machine. In: Proceedings 9th Int.Technical Congress F.I.S.I.T.A., London (1962)Google Scholar
  3. 3.
    Gopalakrishnan, V., Fedewa, D., Mehrabi, M., Kota, S., Orlandea, N.: Parallel structures and their applications in reconfigurable machining systems. In: Proceeding of Year 2000 PKM International Conference, Michigan, Michigan, USA, pp. 87–97 (2000)Google Scholar
  4. 4.
    Merlet, J.P.: Parallel robots, 2nd edn. Kluwer Academic Publishers, Dordrecht (2005) ISBN 1402041322Google Scholar
  5. 5.
    Brezina, T., Andrs, O., Houska, P., Brezina, L.: Some Notes to the Design and Implementation of the Device for Cord Implants Tuning. In: Recent Advances in Mechatronics, pp. 395–400. Springer, Heidelberg (2009) ISBN 978-642-05021-3Google Scholar
  6. 6.
    Liu, K., Fitzgerald, J.M., Lewis, F.L.: Kinematic analysis of a Stewart platform manipulator. IEEE Transactions on Industrial Electronics 40(2), 282–293 (1993)CrossRefGoogle Scholar
  7. 7.
    Boudreau, R., Turkkan, N.: Solving the forward kinematics of parallel manipulators with a genetic algorithm. Journal of Robotic Systems 13(2), 111–125 (1996)zbMATHCrossRefGoogle Scholar
  8. 8.
    Inoue, H., Tsusaka, Y., Fukuizumi, T.: Parallel manipulator. In: Proceedings of ISRR, Gouvieux (1985)Google Scholar
  9. 9.
    Wang, S., Hikita, H., Kubo, H., Zhao, Y., Huang, Z., Ifukube, T.: Kinematics and dynamics of a 6 degree-of-freedom fully parallel manipulator with elastic joints. Mechanism and Machine Theory 38(5) (2003)Google Scholar
  10. 10.
    Cheng, H., Yiu, Y., Li, Z.: Dynamics and Control of Redundantly Actuated Parallel Manipulators. IEEE/ASME Transactions on Mechatronics 8(4), 483–491 (2003)CrossRefGoogle Scholar
  11. 11.
    Lebret, G., Liu, K., Lewis, F.L.: Dynamic analysis and control of a Stewart platform manipulator. J. Robotic Syst (1993)Google Scholar
  12. 12.
    Carvalho, J.C.M., Ceccarelli, M.: A Closed-Form Formulation for the Inverse Dynamics of a Cassino Parallel Manipulator. Multibody System Dynamics 5(2), 185–210 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dasgupta, B., Choudhury, P.: A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators. Mechanism and Machine Theory 34(6), 801–824 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Zhang, C., Song, S.: An efficient method for inverse dynamics of manipulators based on the virtual work principle. J. Robotic Syst. 10(5) (1993)Google Scholar
  15. 15.
    Gallardo, J., Rico, J.M., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mechanism and Machine Theory 38(11), 1113–1131 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kha, N.B., Ahn, K.K.: Position control of shape memory alloy actuators by using self tuning fuzzy PID controller. In: Proceedings of IEEE International Conference on Industrial Electronics and Applications, Singapore (2006)Google Scholar
  17. 17.
    Ahmed, R., Abdul, O., Marcel, C.: dSPACE DSP-based rapid prototyping of fuzzy PID controls for high performance brushless servo drives. In: Proceedings of IEEE International Conference, USA, pp. 1360–1364 (2006)Google Scholar
  18. 18.
    Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Pub. Co., Amsterdam (1985)Google Scholar
  19. 19.
    MATLAB, Fuzzy Logic ToolboxTM User’s Guide (2011)Google Scholar
  20. 20.
    Andrs, O., Brezina, T.: Control simulation of a linear actuator (In Czech). In: Automatizacia a riadenie v teorii a praxi 2010, Technicka univerzita v Kosiciach, Stara Lesna, pp.13-1–13-7 (2010) ISBN 978-80-553-0146-4Google Scholar
  21. 21.
    Andrs, O., Brezina, T.: Controller Implementation of the Stewart Platform Linear Actuator, pp. 1357–1359 (2010); Katalinic, B.: Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, p. 0679. DAAAM International, Vienna (2010) ISBN 978-3-901509-73-5, ISSN 1726-9679Google Scholar
  22. 22.
    Brezina, T., Brezina, L.: Controller design of the Stewart platform linear actuator. In: Recent Advances in Mechatronics, pp. 341–346. Springer, Heidelberg (2009) ISBN 978-3-642-05021-3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • O. Andrs
    • 1
  • T. Brezina
    • 1
  • J. Kovar
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute of Automation and Computer ScienceBrno University of TechnologyBrnoCzech Republic

Personalised recommendations