Advertisement

Regulatory Networks under Ellipsoidal Uncertainty – Data Analysis and Prediction by Optimization Theory and Dynamical Systems

  • Erik Kropat
  • Gerhard-Wilhelm Weber
  • Chandra Sekhar Pedamallu
Part of the Intelligent Systems Reference Library book series (ISRL, volume 24)

Abstract

We introduce and analyze time-discrete target-environment regulatory systems (TE-systems) under ellipsoidal uncertainty. The uncertain states of clusters of target and environmental items of the regulatory system are represented in terms of ellipsoids and the interactions between the various clusters are defined by affine-linear coupling rules. The parameters of the coupling rules and the time-dependent states of clusters define the regulatory network. Explicit representations of the uncertain multivariate states of the system are determined with ellipsoidal calculus. In addition, we introduce various regression models that allow us to determine the unknown system parameters from uncertain (ellipsoidal) measurement data by applying semidefinite programming and interior point methods. Finally, we turn to rarefications of the regulatory network. We present a corresponding mixed integer regression problem and achieve a further relaxation by means of continuous optimization. We analyze the structure of the optimization problems obtained, especially, in view of their solvability, we discuss the structural frontiers and research challenges, and we conclude with an outlook.

Keywords

regulatory systems continuous optimization mixed integer programming mathematical modeling uncertainty networks operations research parameter estimation dynamical systems gene-environment networks eco-finance networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhmet, M.U., Gebert, J., Öktem, H., Pickl, S.W., Weber, G.-W.: An improved algorithm for analytical modeling and anticipation of gene expression patterns. Journal of Computational Technologies 10(4), 3–20 (2005)zbMATHGoogle Scholar
  2. 2.
    Akume, D., Weber, G.-W.: Cluster algorithms: theory and methods. Journal of Computational Technologies 7(1), 15–27 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–381 (2000)CrossRefGoogle Scholar
  4. 4.
    Alparslan Gök, S.Z.: Cooperative interval games. PhD Thesis at Institute of Applied Mathematics of METU, Ankara (2009)Google Scholar
  5. 5.
    Alparslan Gök, S.Z., Branzei, R., Tijs, S.: Convex interval games. Journal of Applied Mathematics and Decision Sciences 2009, 14, article ID 342089 (2009), doi:10.1155/2009/342089CrossRefGoogle Scholar
  6. 6.
    Alparslan Gök, S.Z., Branzei, R., Tijs, S.: Airport interval games and their Shapley value. Operations Research and Decisions 2, 9–18 (2009)Google Scholar
  7. 7.
    Alparslan Gök, S.Z., Miquel, S., Tijs, S.: Cooperation under interval uncertainty. Math. Methods Oper. Res. 69, 99–109 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Aster, A., Borchers, B., Thurber, C.: Parameter estimation and inverse problems. Academic Press, London (2004)Google Scholar
  9. 9.
    Bagirov, A.M., Ugon, J.: Piecewise partially separable functions and a derivative-free algorithm for large scale nonsmooth optimization. J. Global Optim. 35, 163–195 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bagirov, A.M., Yearwood, J.: A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. European J. Oper. Res. 170(2), 578–596 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Barzily, Z., Volkovich, Z.V., Akteke-Öztürk, B., Weber, G.-W.: Cluster stability using minimal spanning trees. In: ISI Proceedings of 20th Mini-EURO Conference Continuous Optimization and Knowledge-Based Technologies, Neringa, Lithuania, May 20-23, 2008, pp. 248–252 (2008)Google Scholar
  12. 12.
    Barzily, Z., Volkovich, Z.V., Akteke-Öztürk, B., Weber, G.-W.: On a minimal spanning tree approach in the cluster validation problem. In: Dzemyda, G., Miettinen, K., Sakalauskas, L (guest eds.) To appear in the special issue of INFORMATICA at the occasion of 20th Mini-EURO Conference Continuous Optimization and Knowledge Based Technologies, Neringa, Lithuania, May 20-23 (2008)Google Scholar
  13. 13.
    Benedetti, R.: Real algebraic and semi-algebraic sets. In: Hermann (ed.) des Sciences et des Arts, Paris (1990)Google Scholar
  14. 14.
    Ben-Tal, A.: Conic and robust optimization. Lecture notes (2002), http://iew3.technion.ac.il/Home/Users/morbt.phtml
  15. 15.
    Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  16. 16.
    Bollobás, B.: Random graphs. Academic, London (1985)zbMATHGoogle Scholar
  17. 17.
    Borenstein, E., Feldman, M.W.: Topological signatures of species interactions in metabolic networks. J. Comput. Biol. 16(2), 191–200 (2009), doi:10.1089/cmb.2008.06TTCrossRefGoogle Scholar
  18. 18.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  19. 19.
    Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Proc. Pacific Symposium on Biocomputing, pp. 29–40 (1999)Google Scholar
  20. 20.
    Crucitti, P., Latore, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks. Physica A 340, 388–394 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Durieu, P., Walter, É., Polyak, B.: Multi-input multi-output ellipsoidal state bounding. J. Optim. Theory Appl. 111(2), 273–303 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Elishakoff, I.: Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization. Springer, Heidelberg (1999)Google Scholar
  23. 23.
    Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–60 (1960)zbMATHGoogle Scholar
  24. 24.
    Ergenç, T., Weber, G.-W.: Modeling and prediction of gene-expression patterns reconsidered with Runge-Kutta discretization. Journal of Computational Technologies 9(6), 40–48 (2004); special issue at the occasion of seventieth birthday of Prof. Dr. Karl Roesner, TU DarmstadtzbMATHGoogle Scholar
  25. 25.
    Gebert, J., Lätsch, M., Pickl, S.W., Radde, N., Weber, G.-W., Wünschiers, R.: Genetic networks and anticipation of gene expression patterns. In: Computing Anticipatory Systems: CASYS(92)03 – Sixth International Conference, AIP Conference Proceedings, vol. 718, pp. 474–485 (2004)Google Scholar
  26. 26.
    Gebert, J., Lätsch, M., Pickl, S.W., Weber, G.-W., Wünschiers, R.: An algorithm to analyze stability of gene-expression pattern. In: Anthony, M., Boros, E., Hammer, P.L., Kogan, A. (guest eds.) Special issue Discrete Mathematics and Data Mining II of Discrete Appl. Math.,vol. 154(7), pp. 1140–1156.Google Scholar
  27. 27.
    Gebert, J., Lätsch, M., Quek, E.M.P., Weber, G.-W.: Analyzing and optimizing genetic network structure via path-finding. Journal of Computational Technologies 9(3), 3–12 (2004)zbMATHGoogle Scholar
  28. 28.
    Gebert, J., Öktem, H., Pickl, S.W., Radde, N., Weber, G.-W., Yılmaz, F.B.: Inference of gene expression patterns by using a hybrid system formulation – an algorithmic approach to local state transition matrices. In: Lasker, G.E., Dubois, D.M. (eds.) Anticipative and predictive models in systems science I, IIAS (International Institute for Advanced Studies) in Windsor, Ontario, pp. 63–66 (2004)Google Scholar
  29. 29.
    Gebert, J., Radde, N., Weber, G.-W.: Modelling gene regulatory networks with piecewise linear differential equations. To appear in the special issue (feature cluster) Challenges of Continuous Optimization in Theory and Applications of European J. Oper. Res (2006)Google Scholar
  30. 30.
    Gökmen, A., Kayalgil, S., Weber, G.-W., Gökmen, I., Ecevit, M., Sürmeli, A., Bali, T., Ecevit, Y., Gökmen, H., DeTombe, D.J.: Balaban Valley Project: Improving the Quality of Life in Rural Area in Turkey. International Scientific Journal of Methods and Models of Complexity 7(1) (2004)Google Scholar
  31. 31.
    Hardt, R.M., Lambrechts, P., Turchin, V., Volić, I.: Real homotopy theory of semi-algebraic sets (2008), eprint arXiv 0806, 476 Google Scholar
  32. 32.
    Harris, J.R., Nystad, W., Magnus, P.: Using genes and environments to define asthma and related phenotypes: applications to multivariate data. Clinical and Experimental Allergy 28(1), 43–45 (1998)CrossRefGoogle Scholar
  33. 33.
    Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(6), 607–616 (1996)CrossRefGoogle Scholar
  34. 34.
    Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  35. 35.
    Hoon, M.D., Imoto, S., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. In: Proc. Pacific Symposium on Biocomputing, pp. 17–28 (2003)Google Scholar
  36. 36.
    Işcanoğlu, A., Weber, G.-W., Taylan, P.: Predicting default probabilities with generalized additive models for emerging markets. Graduate Summer School on New Advances in Statistics, METU (2007) (invited lecture)Google Scholar
  37. 37.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  38. 38.
    Jong, H.D.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 103–129 (2002)Google Scholar
  39. 39.
    Krabs, W.: Mathematical modelling, Teubner, Stuttgart (1997)Google Scholar
  40. 40.
    Krabs, W.: Dynamische Systeme: Steuerbarkeit und chaotisches Verhalten, Teubner, Stuttgart (1998)Google Scholar
  41. 41.
    Krabs, W., Pickl, S.: A game-theoretic treatment of a time-discrete emission reduction model. Int. Game Theory Rev. 6(1), 21–34 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Kropat, E., Pickl, S., Rössler, A., Weber, G.-W.: On theoretical and practical relations between discrete optimization and nonlinear optimization. Special issue Colloquy Optimization – Structure and Stability of Dynamical Systems (at the occasion of the colloquy with the same name, Cologne, October 2000) of Journal of Computational Technologies, 7 (special Issue), pp. 27–62 (2002)Google Scholar
  43. 43.
    Kropat, E., Weber, G.-W., Akteke-Öztürk, B.: Eco-Finance networks under uncertainty. In: Herskovits, J., Canelas, A., Cortes, H., Aroztegui, M. (eds.) Proceedings of the International Conference on Engineering, EngOpt 2008, Rio de Janeiro, Brazil (2008), ISBN 978857650156-5, CDGoogle Scholar
  44. 44.
    Kurzhanski, A.B., Vályi, I.: Ellipsoidal calculus for estimation and control. Birkhäuser (1997)Google Scholar
  45. 45.
    Kurzhanski, A.A., Varaiya, P.: Ellipsoidal toolbox manual, EECS Department, University of California, Berkeley (2008)Google Scholar
  46. 46.
    Li, L., Alderson, D., Tanaka, R., Doyle, J.C., Willinger, W.: Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Extended Version). Technical Report CIT-CDS-04-006, Engineering & Applied Sciences Division California Institute of Technology, Pasadena, CA, USA (2005)Google Scholar
  47. 47.
    Li, Y.F., Venkatesh, S., Li, D.: Modeling global emissions and residues of pesticided. Environmental Modeling and Assessment 9, 237–243 (2004)Google Scholar
  48. 48.
    Liu, Q., Yang, J., Chen, Z., Yang, M.Q., Sung, A.H., Huang, X.: Supervised learning-based tagSNP selection for genome-wide disease classifications. BMC Genomics 9, 1 (2007)Google Scholar
  49. 49.
    Lorenz, R., Boyd, S.: An ellipsoidal approximation to the Hadamard product of ellipsoids. In: Proceedings IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1193–1196 (2002)Google Scholar
  50. 50.
    Nemirovski, A.: Five lectures on modern convex optimization. C.O.R.E. Summer School on Modern Convex Optimization (2002), http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf
  51. 51.
    Nemirovski, A.: Lectures on modern convex optimization. Israel Institute of Technology (2002), http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf
  52. 52.
    Nemirovski, A.: Interior point polynomial time algorithms in convex programming, lecture Notes (2004), https://itweb.isye.gatech.edu
  53. 53.
    Nemirovski, A.: Modern convex optimization. In: PASCAL Workshop, Thurnau, March 16-18 (2005)Google Scholar
  54. 54.
    Nesterov, Y.E., Nemirovskii, A.S.: Interior point polynomial algorithms in convex programming. SIAM, Philadelphia (1994)zbMATHCrossRefGoogle Scholar
  55. 55.
    Özöğür, S.: Mathematical modelling of enzymatic reactions, simulation and parameter estimation. MSc. thesis at Institute of Applied Mathematics, METU, Ankara (2005)Google Scholar
  56. 56.
    Özögür-Akyüz, S., Akteke-Öztürk, B., Tchemisova, T., Weber, G.-W.: New optimization methods in data mining. To appear in the proceedings of International Conference Operations Research (OR 2008), Augsburg, Germany, September 3-5, Springer, Heidelberg (2008)Google Scholar
  57. 57.
    Özöğür, S., Sağdıçoğlu Celep, A.G., Karasözen, B., Yıldırım, N., Weber, G.-W.: Dynamical modelling of enzymatic reactions, simulation and parameter estimation with genetic algorithms. In: HIBIT – Proceedings of International Symposium on Health Informatics and Bioinformatics, Antalya, Turkey, pp. 78–84 (2005)Google Scholar
  58. 58.
    Partner, M., Kashtan, N., Alon, U.: Environmental variability and modularity of bacterial metabolic networks. BMC Evolutionary Biology 7, 169 (2007), doi:10.1186/1471-2148-7-169CrossRefGoogle Scholar
  59. 59.
    Pickl, S.: Der τ-value als Kontrollparameter - Modellierung und Analyse eines Joint-Implementation Programmes mithilfe der dynamischen kooperativen Spieltheorie und der diskreten Optimierung. Thesis, Darmstadt University of Technology, Department of Mathematics (1998)Google Scholar
  60. 60.
    Pickl, S.: An iterative solution to the nonlinear time-discrete TEM model - the occurence of chaos and a control theoretic algorithmic approach. In: AIP Conference Proceedings, vol. 627(1), pp. 196–205 (2002)Google Scholar
  61. 61.
    Pickl, S.: An algorithmic solution for an optimal decision making process within emission trading markets. In: Proceedings of the DIMACS-LAMSADE Workshop on Computer Science and Decision Theory, Annales du Lamsade No. 3, Laboratoire d’Analyse et Modélisation de Systémes pour l’Aide a la DécisionGoogle Scholar
  62. 62.
    Pickl, S., Weber, G.-W.: Optimization of a time-discrete nonlinear dynamical system from a problem of ecology - an analytical and numerical approach. Journal of Computational Technologies 6(1), 43–52 (2001)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Riener, C., Theobald, T.: Positive Polynome und semidefinite Optimierung. Jahresbericht der DMV - JB 100. Band, Heft 2, 57–76 (2008)MathSciNetGoogle Scholar
  64. 64.
    Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 32(4), 430–442 (2002)CrossRefGoogle Scholar
  65. 65.
    Shapiro, A., Dentcheva, D., Ruszczyn̈ski, A.: Lectures on stochastic programming: modeling and theory. SIAM, Philadelphia (2009)zbMATHCrossRefGoogle Scholar
  66. 66.
    Taştan, M.: Analysis and prediction of gene expression patterns by dynamical systems, and by a combinatorial algorithm, Institute of Applied Mathematics, METU, MSc Thesis (2005)Google Scholar
  67. 67.
    Taştan, M., Ergenç, T., Pickl, S.W., Weber, G.-W.: Stability analysis of gene expression patterns by dynamical systems and a combinatorial algorithm. In: HIBIT – Proceedings of International Symposium on Health Informatics and Bioinformatics, Antalya, Turkey, pp. 67–75 (2005)Google Scholar
  68. 68.
    Taştan, M., Pickl, S.W., Weber, G.-W.: Mathematical modeling and stability analysis of gene-expression patterns in an extended space and with Runge-Kutta discretization. In: Proceedings of Operations Research, Bremen, September 2005, pp. 443–450. Springer, Heidelberg (2005)Google Scholar
  69. 69.
    Taylan, P., Weber, G.-W.: New approaches to regression in financial mathematics by additive models. Journal of Computational Technologies 12(2), 3–22 (2007)zbMATHGoogle Scholar
  70. 70.
    Taylan, P., Weber, G.-W., Beck, A.: New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and techology. In: Rubinov, A., Burachik, B., Yang, X. (guest eds.) (The special issue in honour) Optimization, vol. 56(5-6), pp. 1–24 (2007), doi: http://dx.doi.org/doi:10.1080/02331930701618740
  71. 71.
    Taylan, P., Weber, G.-W., Kropat, E.: Approximation of stochastic differential equations by additive models using splines and conic programming. To appear in International Journal of Computing Anticipatory Systems 20-21-22; Dubois, D.M. (ed.) At the occasion of CASYS 2007, Eighth International Conference on Computing Anticipatory Systems, Liege, Belgium, August 6-11, 2007 (2008), ISSN 1373-5411Google Scholar
  72. 72.
    Taylan, P., Weber, G.-W., Liu, L., Yerlikaya, F.: On foundation of parameter estimation for generalized partial linear models with B-Splines and continuous optimization. Computers and Mathematics with Applications (CAMWA) 60(1), 134–143 (2010)zbMATHCrossRefGoogle Scholar
  73. 73.
    Taylan, P., Weber, G.-W., Yerlikaya, F.: Continuous optimization applied in MARS for modern applications in finance, science and technology. In: The ISI Proceedings of 20th Mini-EURO Conference Continuous Optimization and Knowledge-Based Technologies, Neringa, Lithuania, May 20-23, pp. 317–322 (2008)Google Scholar
  74. 74.
    Taylan, P., Weber, G.-W., Yerlikaya, F.: A new approach to multivariate adaptive regression spline by using Tikhonov regularization and continuous optimization. TOP (the Operational Research Journal of SEIO (Spanish Statistics and Operations Research Society) 18(2), 377–395 (2010)zbMATHGoogle Scholar
  75. 75.
    Uğur, Ö., Pickl, S.W., Weber, G.-W., Wünschiers, R.: An algorithmic approach to analyze genetic networks and biological energy production: an Introduction and contribution where OR meets biology. Optimization 58(1), 1–22 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Uğur, Ö., Weber, G.-W.: Optimization and dynamics of gene-environment networks with intervals. In: The special issue at the occasion of the 5th Ballarat Workshop on Global and Non-Smooth Optimization: Theory, Methods and Applications, November 28-30; J. Ind. Manag. Optim. 3(2), 357–379 (2006)Google Scholar
  77. 77.
    Vazhentsev, A.Y.: On internal ellipsoidal approximations for problems of control synthesis with bounded coordinates. J. Comput. System Sci. Int. 39(3), 399 (2000)MathSciNetGoogle Scholar
  78. 78.
    Volkovich, Z., Barzily, Z., Weber, G.-W., Toledano-Kitai, D.: Cluster stability estimation based on a minimal spanning trees approach. In: Hakim, A.H., Vasant, P. (Guest eds.) Proceedings of the Second Global Conference on Power Control and Optimization, AIP Conference Proceedings 1159, Bali, Indonesia, June 1-3. Subseries: Mathematical and Statistical Physics, pp. 299–305 (August 2009), ISBN: 978-0-7354-0696-4 Google Scholar
  79. 79.
    Weber, G.-W.: Charakterisierung struktureller Stabilität in der nichtlinearen Optimierung. In: Bock, H.H., Jongen, H.T., Plesken, W. (eds.) Aachener Beiträge zur Mathematik 5, Augustinus publishing house (now: Mainz publishing house), Aachen (1992)Google Scholar
  80. 80.
    Weber, G.-W.: Minimization of a max-type function: Characterization of structural stability. In: Guddat, J., Jongen, H.T., Kummer, B., Nožička, F. (eds.) Parametric Optimization and Related Topics III, pp. 519–538. Peter Lang publishing house, Frankfurt a.M. (1993)Google Scholar
  81. 81.
    Weber, G.-W.: Generalized semi-infinite optimization and related topics. In: Hofmannn, K.H., Wille, R. (eds.) Research and Exposition in Mathematics 29, Lemgo, Heldermann Publishing House (2003)Google Scholar
  82. 82.
    Weber, G.-W., Alparslan-Gök, S.Z., Dikmen, N.: Environmental and life sciences: gene-environment networks - optimization, games and control - a survey on recent achievements. The Special Issue of Journal of Organisational Transformation and Social Change 5(3), 197–233 (2008); Guest editor: DeTombe, D. CrossRefGoogle Scholar
  83. 83.
    Weber, G.-W., Alparslan-Gök, S.Z., Söyler, B.: A new mathematical approach in environmental and life sciences: gene-environment networks and their dynamics. Environmental Modeling & Assessment 14(2), 267–288 (2007)CrossRefGoogle Scholar
  84. 84.
    Weber, G.-W., Kropat, E., Akteke-Öztürk, B., Görgülü, Z.-K.: A survey on OR and mathematical methods applied on gene-environment networks. Central European Journal of Operations Research (CEJOR) 17(3), 315–341 (2009); Dlouhy, M., Pickl, P., Rauner, M., Leopold-Wildburger, U. (Guest eds.): CEJOR special issue at the occasion of EURO XXII 2007, Prague, Czech Republic, July 8-11 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Weber, G.-W., Kropat, E., Tezel, A., Belen, S.: Optimization applied on regulatory and eco-finance networks - survey and new developments. Pacific Journal of Optimization 6(2), 319–340 (2010); Fukushima, M., Kelley, C.T., Qi, L., Sun J., Ye, Y. (Guest eds.): Special issue in memory of Professor Alexander Rubinov MathSciNetzbMATHGoogle Scholar
  86. 86.
    Weber, G.-W., Kürüm, E., Yildirak, K.: A classification problem of credit risk rating investigated and solved by optimization of the ROC curve. To appear in CEJOR (Central European Journal of Operations Research) special issue at the occasion of EURO XXIV 2010, Lisbon (2010), doi:10.1007/s10100-011-0224-5 Google Scholar
  87. 87.
    Weber, G.-W., Özögür-Akyüz, S., Kropat, E.: A review on data mining and continuous optimization applications in computational biology and medicine. Embryo Today, Birth Defects Research (Part C) 87, 165–181 (2009)CrossRefGoogle Scholar
  88. 88.
    Weber, G.-W., Taylan, P., Alparslan-Gök, S.-Z., Özöğür, S., Akteke-Öztürk, B.: Optimization of gene-environment networks in the presence of errors and uncertainty with Chebychev approximation. TOP, the Operational Research Journal of SEIO (Spanish Statistics and Operations Research Society) 16(2), 284–318 (2008)zbMATHGoogle Scholar
  89. 89.
    Weber, G.-W., Tezel, A.: On generalized semi-infinite optimization of genetic networks. TOP 15(1), 65–77 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Weber, G.-W., Tezel, A., Taylan, P., Soyler, A., Çetin, M.: Mathematical contributions to dynamics and optimization of gene-environment networks. Optimization 57(2), 353–377 (2008); Pallaschke, D., Stein, O. (Guest eds.): Special Issue: In Celebration of Prof. Dr. Hubertus Th. Jongen’s 60th BirthdayMathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Weber, G.-W., Uğur, Ö., Taylan, P., Tezel, A.: On optimization, dynamics and uncertainty: a tutorial for gene-environment networks. The special issue Networks in Computational Biology of Discrete Applied Mathematics 157(10), 2494–2513 (2009)zbMATHGoogle Scholar
  92. 92.
    Yerlikaya, F.: A new contribution to nonlinear robust regression and classification with mars and its applications to data mining for quality control in manufacturing. Thesis, Middle East Technical University, Ankara, Turkey (2008)Google Scholar
  93. 93.
    Yerlikaya, F., Weber, G.-W., Batmas, I., Köksal, G., Taylan, P.: MARS Algoritmasínda Tikhonov düzenlemesi ve çok amaçli optimizasyon kullanimi. In: The Proceedings of Operational Research and Industrial Engineering Annual Conference (YA/EM 2008), Galatasaray University, Istanbul, Turkey (2008)Google Scholar
  94. 94.
    Yılmaz, F.B.: A mathematical modeling and approximation of gene expression patterns by linear and quadratic regulatory relations and analysis of gene networks, Institute of Applied Mathematics, METU, MSc Thesis (2004)Google Scholar
  95. 95.
    Yılmaz, F.B.,Öktem, H., Weber, G.-W.: Mathematical modeling and approximation of gene expression patterns and gene networks. In: Fleuren, F., den Hertog, D., Kort, P.(eds.): Operations Research Proceedings, pp. 280–287 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erik Kropat
    • 1
  • Gerhard-Wilhelm Weber
    • 2
    • 3
    • 4
    • 5
  • Chandra Sekhar Pedamallu
    • 6
  1. 1.Institute for Theoretical Computer Science, Mathematics and Operations ResearchUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.Faculty of Economics, Business and LawUniversity of SiegenGermany
  4. 4.Center for Research on Optimization and ControlUniversity of AveiroPortugal
  5. 5.Faculty of ScienceUniversiti Teknologi MalaysiaSkudaiMalaysia
  6. 6.Bioinformatics GroupNew England Biolabs IncIpswichUSA

Personalised recommendations