A Numerical Study of Geometric Corrections for Representation Optimisation

  • David Daniel O’Regan
Part of the Springer Theses book series (Springer Theses)


The parallel transport of tensors such as the density kernel and Hamiltonian has been shown in the previous chapter to contribute non-zero correction terms when the support functions representing single-particle orbitals in density-matrix based ab initio calculations are allowed to change.


Conjugate Gradient Density Kernel Support Function Conjugate Gradient Algorithm Christoffel Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, Introducing ONETEP: Linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 084119 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    P.D. Haynes, C.-K. Skylaris, A.A. Mostofi, M.C. Payne, Elimination of basis set superposition error in linear-scaling density-functional calculations with local orbitals optimised in situ. Chem. Phys. Lett. 422, 345 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    F. Mauri, G. Galli, R. Car, Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys. Rev. B 47(15), 9973 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    F. Mauri, G. Galli, Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B 50(7), 4316 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kim, F. Mauri, G. Galli, Total-energy global optimizations using nonorthogonal localized orbitals. Phys. Rev. B 52(3), 1640 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    P. Ordejón, D.A. Drabold, R.M. Martin, M.P. Grumbach, Linear system-size scaling methods for electronic-structure calculations. Phys. Rev. B 51(3), 1456 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    C.-K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Diéguez, M.C. Payne, Nonorthogonal generalized Wannier function pseudopotential plane-wave method. Phys. Rev. B 66(3), 035119 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    G. Malloci, G. Mulas, G. Cappellini, C. Joblin, Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states −1, 0, +1, and +2. Chem. Phys. 34(1-3), 43 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    T.A. Niehaus, M. Rohlfing, F. Della Sala, A. Di Carlo, T. Frauenheim, Quasiparticle energies for large molecules: a tight-binding-based Green’s-function approach. Phys. Rev. A 71(2), 022508 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    P. Elliott, F. Furche,K. Burke. Excited states from time-dependent density functional theory. Reviews in Computational Chemistry (Wiley, 2009), pp. 91–165Google Scholar
  11. 11.
    A.A. Mostofi, P.D. Haynes, C.-K. Skylaris, M.C. Payne, Preconditioned interative minimisation for linear-scaling electronic structure calculations. J. Chem. Phys. 119, 8842 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    D. Baye, P.-H. Heenen, Generalised meshes for quantum mechanical problems. J. Phys. A: Math. Gen. 19, 2041 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    X.-P. Li, R.W. Nunes, D. Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B. 47(16), 10891 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    R.W. Nunes, D. Vanderbilt, Generalization of the density-matrix method to a nonorthogonal basis. Phys. Rev. B 50(23), 17611 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Daw, Model for energetics of solids based on the density matrix. Phys. Rev. B 47(16), 10895 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    R. McWeeny, Some recent advances in density matrix theory. Rev. Mod. Phys. 32(2), 335 (1960)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    T. Ozaki, Efficient recursion method for inverting an overlap matrix. Phys. Rev. B 64(19), 195110 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1. Cavendish LaboratoryTCM Group, University of CambridgeCambridgeUK

Personalised recommendations