Advertisement

Subspace Representations in Ab Initio Methods for Strongly Correlated Systems

  • David Daniel O’Regan
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We present, in this chapter, a generalised definition of subspace occupancy matrices in ab initio methods for strongly correlated materials, such as DFT+U and DFT+DMFT, which is appropriate to the case of nonorthogonal projector functions.

Keywords

Magnetic Dipole Moment Local Magnetic Moment Tensorial Invariance Subspace Projection Wannier Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.D. O’Regan, N.D.M. Hine, M.C. Payne, A.A. Mostofi, Projector self-consistent DFT+U using nonorthogonal generalized Wannier functions. Phys. Rev. B 82(8), 081102 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    D.D. O’Regan, M.C. Payne, A.A. Mostofi, Subspace representations in ab initio methods for strongly correlated systems. Phys. Rev. B 83(24), 245124 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czy zyk, G.A Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48(23), 16929 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matter 9(35), 7359 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A.I. Lichtenstein, M.I. Katsnelson, Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57(12), 6884 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Han, T. Ozaki, J. Yu, O(N) LDA+U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis. Phys. Rev. B 73(4), 045110 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    C. Tablero, Representations of the occupation number matrix on the LDA/GGA+U method. J. Phys. Condens. Matter 20(32), 325205 (2008)CrossRefGoogle Scholar
  9. 9.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    C.-K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Diéguez, M.C. Payne, Nonorthogonal generalized Wannier function pseudopotential plane-wave method. Phys. Rev. B 66(3), 035119 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    E. Hernández, M.J. Gillan, Self-consistent first-principles technique with linear scaling. Phys. Rev. B 51(15), 10157 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    F. Mauri, G. Galli, Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B 50(7), 4316 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    W.E. Pickett, S.C. Erwin, E.C. Ethridge, Reformulation of the LDA+U method for a local-orbital basis. Phys. Rev. B 58(3), 1201 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    K.K.H. Eschrig, I. Chaplygin, Density functional application to strongly correlated electron systems. J. Solid State Chem. 176(2), 482 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    P.O. Löwdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365 (1950)ADSCrossRefGoogle Scholar
  16. 16.
    E. Artacho, L.M. del Bosch , Nonorthogonal basis sets in quantum mechanics: representations and second quantization. Phys. Rev. A 43(11), 5770 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    C.A. White, P. Maslen, M.S. Lee, M. Head-Gordon, The tensor properties of energy gradients within a non-orthogonal basis. Chem. Phys. Lett. 276(1–2), 133 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    M. Cococcioni, S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71(3), 035105 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions I. J. Chem. Phys. 23, 1833 (1955)ADSCrossRefGoogle Scholar
  20. 20.
    A. Einstein, Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. 354, 769 (1916)CrossRefGoogle Scholar
  21. 21.
    H.J. Kulik, M. Cococcioni, D.A. Scherlis, N. Marzari, Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett. 97(10), 103001 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    P.W. Anderson, Self-consistent pseudopotentials and ultralocalized functions for energy bands. Phys. Rev. Lett. 21(1), 13 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57(3), 1505 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    O. Gunnarsson, O.K. Andersen, O. Jepsen, J. Zaanen, Density-functional calculation of the parameters in the Anderson model: application to Mn in CdTe. Phys. Rev. B 39(3), 1708 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    V.I. Anisimov, O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43(10), 7570 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    K. Nakamura, R. Arita, Y. Yoshimoto, S. Tsuneyuki, First-principles calculation of effective onsite Coulomb interactions of 3d transition metals: constrained local density functional approach with maximally localized Wannier functions. Phys. Rev. B 74(23), 235113 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A.I. Lichtenstein, Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B 70(19), 195104 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    K. Karlsson, F. Aryasetiawan, O. Jepsen, Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme. Phys. Rev. B 81(24), 245113 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    F. Aryasetiawan, K. Karlsson, O. Jepsen, U. Schönberger, Calculations of Hubbard U from first-principles. Phys. Rev. B 74(12), 125106 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    N. Marzari, D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56(20), 12847 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    I. Souza, N. Marzari, D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65(3), 035109 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    T. Miyake, F. Aryasetiawan, Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B 77(8), 085122 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    O. Bengone, M. Alouani, P. Blöchl, J. Hugel, Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO. Phys. Rev. B 62(24), 16392 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    V.L. Campo Jr, M. Cococcioni, Extended DFT+U+V method with on-site and inter-site electronic interactions. J. Phys. Condens. Matter 22(5), 055602 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    C.-C. Lee, H.C. Hsueh, W. Ku, Dynamical linear response of TDDFT with LDA+U functional: strongly hybridized Frenkel excitons in NiO. Phys. Rev. B 82(8), 081106 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    M.D. Towler, N.L. Allan, N.M. Harrison, V.R. Saunders, W.C. Mackrodt, E. Aprà, Ab initio study of MnO and NiO. Phys. Rev. B 50(8), 5041 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    G.A. Sawatzky, J.W. Allen, Magnitude and origin of the band gap in NiO. Phys. Rev. Lett. 53(24), 2339 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 084119 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    P.D. Haynes, C.-K. Skylaris, A.A. Mostofi, M.C. Payne, Elimination of basis set superposition error in linear-scaling density-functional calculations with local orbitals optimised in situ. Chem. Phys. Lett. 422, 345 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Optimized pseudopotentials. Phys. Rev. B 41(2), 1227 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)ADSCrossRefGoogle Scholar
  43. 43.
    A.A. Mostofi, P.D. Haynes, C.-K. Skylaris, M.C. Payne, Preconditioned interative minimisation for linear-scaling electronic structure calculations. J. Chem. Phys. 119, 8842 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    D. Baye, P.-H. Heenen, Generalised meshes for quantum mechanical problems. J. Phys. A Math. Gen. 19, 2041 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    P.D. Haynes, C.-K. Skylaris, A.A. Mostofi, M.C. Payne, Density kernel optimization in the ONETEP code. J. Phys. Condens. Matter 20(29), 294207 (2008)CrossRefGoogle Scholar
  46. 46.
    R. McWeeny, Some recent advances in density matrix theory. Rev. Mod. Phys. 32(2), 335 (1960)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    X.-P. Li, R.W. Nunes, D. Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B 47(16), 10891 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    R.W. Nunes, D. Vanderbilt, Generalization of the density-matrix method to a nonorthogonal basis. Phys. Rev. B 50(23), 17611 (1994)ADSCrossRefGoogle Scholar
  49. 49.
    M.S. Daw, Model for energetics of solids based on the density matrix. Phys. Rev. B 47(16), 10895 (1993)ADSCrossRefGoogle Scholar
  50. 50.
    D.G. Anderson, Iterative procedures for nonlinear integral equations. J. ACM 12(4), 547 (1965)zbMATHCrossRefGoogle Scholar
  51. 51.
    C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    A.J. Cohen, P. Mori-Sanchez, W. Yang, Insights into current limitations of density functional theory. Science 321(5890), 792 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    K. Palotás, A.N. Andriotis, A. Lappas, Structural, electronic, and magnetic properties of nanometer-sized iron-oxide atomic clusters: comparison between GGA and GGA+U approaches. Phys. Rev. B 81(7), 075403 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    D.W. Boukhvalov, A.I. Lichtenstein, V.V. Dobrovitski, M.I. Katsnelson, B.N. Harmon, V.V. Mazurenko, V.I. Anisimov, Effect of local Coulomb interactions on the electronic structure and exchange interactions in \(Mn_{12}\) magnetic molecules. Phys. Rev. B 65(18), 184435 (2002)Google Scholar
  55. 55.
    D.A. Scherlis, M. Cococcioni, P. Sit, N. Marzari, Simulation of Heme using DFT+U: a step toward accurate spin-state energetics. J. Phys. Chem. B 111(25), 7384 (2007)CrossRefGoogle Scholar
  56. 56.
    L.G.G.V. Dias da Silva, M.L. Tiago, S.E. Ulloa, F.A. Reboredo, E. Dagotto, Many-body electronic structure and Kondo properties of cobalt-porphyrin molecules. Phys. Rev. B 80(15), 155443 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    D.W. Boukhvalov, V.V. Dobrovitski, M.I. Katsnelson, A.I. Lichtenstein, B.N. Harmon, P. Kögerler, Electronic structure and exchange interactions in \(V_{15}\) magnetic molecules: LDA+ U results. Phys. Rev. B 70(5), 054417 (2004)Google Scholar
  58. 58.
    Z. Bao, A.J. Lovinger, A. Dodabalapur, Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 69(20), 3066 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    M. Cinchetti, K. Heimer, J.-P. Wstenberg, O. Andreyev, M. Bauer, S. Lach, C. Ziegler, Y. Gao, M. Aeschlimann, Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nat. Mater. 8, 115 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    W. Wu, A. Kerridge, A.H. Harker, A.J. Fisher, Structure-dependent exchange in the organic magnets Cu(II)Pc and Mn(II)Pc. Phys. Rev. B 77(18), 184403 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  63. 63.
    A. Hoshino, Y. Takenaka, H. Miyaji, Redetermination of the crystal structure of \(\alpha\)-copper phthalocyanine grown on KCl. Acta Crystallogr. Sect. B 59, 393 (2003)Google Scholar
  64. 64.
    A.R. Monahan, J.A. Brado, A.F. DeLuca, Dimerization of a copper(II)-phthalocyanine dye in carbon tetrachloride and benzene. J. Phys. Chem. 76(3), 446 (1972)CrossRefGoogle Scholar
  65. 65.
    P. Fuqua, B. Dunn, J. Zink, Optical properties and dimer formation in copper phthalocyanine-doped sol-gel matrices. J. Sol–Gel Sci. Technol. 11, 241 (1998)CrossRefGoogle Scholar
  66. 66.
    H. Xia, M. Nogami, Copper phthalocyanine bonding with gel and their optical properties. Opt. Mater. 15(2), 93 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    N. Marom, A. Tkatchenko, M. Scheffler, L. Kronik, Describing both dispersion interactions and electronic structure using density functional theory: the case of metal-phthalocyanine dimers. J. Chem. Theory Comput. 6(1), 81 (2010)CrossRefGoogle Scholar
  68. 68.
    N. Marom, O. Hod, G.E. Scuseria, L. Kronik, Electronic structure of copper phthalocyanine: a comparative density functional theory study. J. Chem. Phys. 128(16), 164107 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    F. Evangelista, V. Carravetta, G. Stefani, B. Jansik, M. Alagia, S. Stranges, A. Ruocco, Electronic structure of copper phthalocyanine: an experimental and theoretical study of occupied and unoccupied levels. J. Chem. Phys. 126(12), 124709 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    H. Vázquez, P. Jelínek, M. Brandbyge, A. Jauho, F. Flores, Corrections to the density-functional theory electronic spectrum: copper phthalocyanine. Appl. Phys. A 95, 257 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    A. Calzolari, A. Ferretti, M.B. Nardelli, Ab initio correlation effects on the electronic and transport properties of metal(II)phthalocyanine-based devices. Nanotechnology 18(42), 424013 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1. Cavendish LaboratoryTCM Group, University of CambridgeCambridgeUK

Personalised recommendations