Advertisement

Linear-Scaling DFT + U for Large Strongly-Correlated Systems

  • David Daniel O’Regan
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Electronic correlation effects, perhaps even more so than large system sizes, have long captivated electronic structure theorists. In this chapter, we seek to tackle both challenges simultaneously, detailing and demonstrating a linear-scaling implementation of an efficacious ab initio method for strongly-correlated materials. Specifically, we begin by describing the physics of strongly-correlated systems and we discuss the difficulties experienced, and their origins, when exchange-correlation functionals of the local density approximation type are applied to such materials.

Keywords

Density Kernel Hubbard Model Local Magnetic Moment Sparsity Pattern Wannier Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.A. Pople, R.K. Nesbet, Self-consistent orbitals for radicals. J. Chem. Phys. 22, 572 (1954)ADSGoogle Scholar
  2. 2.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J.S. Miller, A.J. Epstein, Organic and organometalling molecular magnetic materials—designer magnets. Angew. Chem. Int. Ed. Engl. 33, 385 (1994)CrossRefGoogle Scholar
  5. 5.
    B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologoes. Nature 414, 345 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    R.H. Holm, P. Kennepohl, E.I. Solomon, Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239 (1996)CrossRefGoogle Scholar
  7. 7.
    N.F. Mott, The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62, 416 (1949)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    K. Terakura, T. Oguchi, A.R. Williams, J. Kübler, Band theory of insulating transition-metal monoxides: Band-structure calculations. Phys. Rev. B 30(8), 4734 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57(3), 1505 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. London Ser. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hubbard, Electron correlations in narrow energy bands II: the degenerate band case. Proc. R. Soc. London Ser. A 277, 237 (1964)ADSCrossRefGoogle Scholar
  13. 13.
    J. Hubbard, Electron correlations in narrow energy bands III: an improved solution. Proc. R. Soc. London Ser. A 281, 401 (1964)ADSCrossRefGoogle Scholar
  14. 14.
    E. Artacho, del L.M. Bosch, Nonorthogonal basis sets in quantum mechanics: representations and second quantization. Phys. Rev. A 43(11), 5770 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49(23), 1691 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    M. Cococcioni, de S. Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71(3), 035105 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    H.J. Kulik, M. Cococcioni, D.A. Scherlis, N. Marzari, Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett. 97(10), 103001 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    A.J. Cohen, P. Mori-Sanchez, W. Yang, Insights into current limitations of density functional theory. Science 321(5890), 792 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Svane, O. Gunnarsson, Transition-metal oxides in the self-interaction-corrected density-functional formalism. Phys. Rev. Lett. 65(9), 1148 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czy zyk, G.A. Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48(23), 16929 (1993)Google Scholar
  22. 22.
    V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matt. 9(35), 7359 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    A.I. Lichtenstein, M.I. Katsnelson, Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57(12), 6884 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    S. Atwell, E. Meggers, G. Spraggon, P.G. Schultz, Structure of a copper-mediated base pair in DNA. J. Am. Chem. Soc. 123(49), 12364 (2001)CrossRefGoogle Scholar
  25. 25.
    D.D. O’Regan, N.D.M. Hine, M.C. Payne, A.A. Mostofi, Projector self-consistent DFT + U using nonorthogonal generalized Wannier functions. Phys. Rev. B 82(8), 081102 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    L.V. Pourovskii, B. Amadon, S. Biermann, A. Georges, Self-consistency over the charge density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications. Phys. Rev. B 76(23), 235101 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    D.D. O’Regan, M.C. Payne, A.A. Mostofi, Subspace representations in ab initio methods for strongly correlated systems. Phys. Rev. B 83(24), 245124 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matt. 9(4), 767 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52(8), R5467 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    M.T. Czy zyk, G.A. Sawatzky, Local-density functional and on-site correlations: the electronic structure of \(\hbox{La}_{2}\hbox{CuO}_{4}\) and \(\hbox{LaCuO}_{3}\). Phys. Rev. B 49(20), 14211 (1994)Google Scholar
  31. 31.
    D.-K. Seo, Self-interaction correction in the LDA + U method. Phys. Rev. B 76, 033102 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    R. McWeeny, Some recent advances in density matrix theory. Rev. Mod. Phys. 32(2), 335 (1960)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    X.-P. Li, R.W. Nunes, D. Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B 47(16), 10891 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    R.W. Nunes, D. Vanderbilt, Generalization of the density-matrix method to a nonorthogonal basis. Phys. Rev. B 50(23), 17611 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Daw, Model for energetics of solids based on the density matrix. Phys. Rev. B 47(16), 10895 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    P.D. Haynes, C.-K. Skylaris, A.A. Mostofi, M.C. Payne, Density kernel optimization in the ONETEP code. J. Phys. Condens. Matt. 20(29), 294207 (2008)CrossRefGoogle Scholar
  37. 37.
    C.A. White, P. Maslen, M.S. Lee, M. Head-Gordon, The tensor properties of energy gradients within a non-orthogonal basis. Chem. Phys. Lett. 276(1–2), 133 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    F. Mauri, G. Galli, R. Car, Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys. Rev. B 47(15), 9973 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    F. Mauri, G. Galli, Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B 50(7), 4316 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    J. Kim, F. Mauri, G. Galli, Total-energy global optimizations using nonorthogonal localized orbitals. Phys. Rev. B 52(3), 1640 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    P. Ordejón, D.A. Drabold, R.M. Martin, M.P. Grumbach, Linear system-size scaling methods for electronic-structure calculations. Phys. Rev. B 51(3), 1456 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    D.A. Scherlis, M. Cococcioni, P. Sit, N. Marzari, Simulation of heme using DFT + U: a step toward accurate spin-state energetics. J. Phys. Chem. B 111(25), 7384 (2007)CrossRefGoogle Scholar
  43. 43.
    H.J. Kulik, N. Marzari, A self-consistent Hubbard U density-functional theory approach to the addition–elimination reactions of hydrocarbons on bare \(\hbox{FeO}^{+}\). J. Chem. Phys. 129(13), 134314 (2008)Google Scholar
  44. 44.
    H.J. Kulik, N. Marzari, Systematic study of first-row transition-metal diatomic molecules: a self-consistent DFT + U approach. J. Chem. Phy. 133(11), 114103 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    H.J. Kulik, L.C. Blasiak, N. Marzari, C.L. Drennan, First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity. J. Am. Chem. Soc. 131(40), 14426 (2009)CrossRefGoogle Scholar
  46. 46.
    H. Hsu, K. Umemoto, M. Cococcioni, R. Wentzcovitch, First-principles study for low-spin \(\hbox{LaCoO}_{3}\) with a structurally consistent Hubbard U. Phys. Rev. B 79(12), 125124 (2009)Google Scholar
  47. 47.
    M.D. Towler, N.L. Allan, N.M. Harrison, V.R. Saunders, W.C. Mackrodt, E. Aprà, Ab initio study of MnO and NiO. Phys. Rev. B 50(8), 5041 (1994)ADSCrossRefGoogle Scholar
  48. 48.
    F. Aryasetiawan, O. Gunnarsson, Electronic structure of NiO in the GW approximation. Phys. Rev. Lett. 74(16), 3221 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, D. Vollhardt, LDA + DMFT computation of the electronic spectrum of NiO. Phys. Rev. B 74(19), 195114 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    W.E. Pickett, S.C. Erwin, E.C. Ethridge, Reformulation of the LDA + U method for a local-orbital basis. Phys. Rev. B 58(3), 1201 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    G.A. Sawatzky, J.W. Allen, Magnitude and origin of the band gap in NiO. Phys. Rev. Lett. 53(24), 2339 (1984)ADSCrossRefGoogle Scholar
  52. 52.
    O. Bengone, M. Alouani, P. Blöchl, J. Hugel, Implementation of the projector augmented-wave LDA + U method: application to the electronic structure of NiO. Phys. Rev. B 62(24), 16392 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    S. López, A.H. Romero, J. Mejía-López, J. Mazo-Zuluaga, J. Restrepo, Structure and electronic properties of iron oxide clusters: a first-principles study. Phys. Rev. B 80(8), 085107 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    K. Palotás, A.N. Andriotis, A. Lappas, Structural, electronic, and magnetic properties of nanometer-sized iron-oxide atomic clusters: comparison between GGA and GGA + U approaches. Phys. Rev. B 81(7), 075403 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    T. Ozaki, Efficient recursion method for inverting an overlap matrix. Phys. Rev. B 64(19), 195110 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1. Cavendish LaboratoryTCM Group, University of CambridgeCambridgeUK

Personalised recommendations