Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems pp 37-63 | Cite as
Linear-Scaling DFT + U for Large Strongly-Correlated Systems
Chapter
First Online:
Abstract
Electronic correlation effects, perhaps even more so than large system sizes, have long captivated electronic structure theorists. In this chapter, we seek to tackle both challenges simultaneously, detailing and demonstrating a linear-scaling implementation of an efficacious ab initio method for strongly-correlated materials. Specifically, we begin by describing the physics of strongly-correlated systems and we discuss the difficulties experienced, and their origins, when exchange-correlation functionals of the local density approximation type are applied to such materials.
Keywords
Density Kernel Hubbard Model Local Magnetic Moment Sparsity Pattern Wannier Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.J.A. Pople, R.K. Nesbet, Self-consistent orbitals for radicals. J. Chem. Phys. 22, 572 (1954)ADSGoogle Scholar
- 2.P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)MathSciNetADSCrossRefGoogle Scholar
- 3.W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
- 4.J.S. Miller, A.J. Epstein, Organic and organometalling molecular magnetic materials—designer magnets. Angew. Chem. Int. Ed. Engl. 33, 385 (1994)CrossRefGoogle Scholar
- 5.B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologoes. Nature 414, 345 (2001)ADSCrossRefGoogle Scholar
- 6.R.H. Holm, P. Kennepohl, E.I. Solomon, Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239 (1996)CrossRefGoogle Scholar
- 7.N.F. Mott, The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62, 416 (1949)ADSCrossRefGoogle Scholar
- 8.J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)ADSCrossRefGoogle Scholar
- 9.K. Terakura, T. Oguchi, A.R. Williams, J. Kübler, Band theory of insulating transition-metal monoxides: Band-structure calculations. Phys. Rev. B 30(8), 4734 (1984)ADSCrossRefGoogle Scholar
- 10.S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57(3), 1505 (1998)ADSCrossRefGoogle Scholar
- 11.J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. London Ser. A 276, 238 (1963)ADSCrossRefGoogle Scholar
- 12.J. Hubbard, Electron correlations in narrow energy bands II: the degenerate band case. Proc. R. Soc. London Ser. A 277, 237 (1964)ADSCrossRefGoogle Scholar
- 13.J. Hubbard, Electron correlations in narrow energy bands III: an improved solution. Proc. R. Soc. London Ser. A 281, 401 (1964)ADSCrossRefGoogle Scholar
- 14.E. Artacho, del L.M. Bosch, Nonorthogonal basis sets in quantum mechanics: representations and second quantization. Phys. Rev. A 43(11), 5770 (1991)ADSCrossRefGoogle Scholar
- 15.J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49(23), 1691 (1982)ADSCrossRefGoogle Scholar
- 16.M. Cococcioni, de S. Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71(3), 035105 (2005)ADSCrossRefGoogle Scholar
- 17.H.J. Kulik, M. Cococcioni, D.A. Scherlis, N. Marzari, Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett. 97(10), 103001 (2006)ADSCrossRefGoogle Scholar
- 18.A.J. Cohen, P. Mori-Sanchez, W. Yang, Insights into current limitations of density functional theory. Science 321(5890), 792 (2008)ADSCrossRefGoogle Scholar
- 19.A. Svane, O. Gunnarsson, Transition-metal oxides in the self-interaction-corrected density-functional formalism. Phys. Rev. Lett. 65(9), 1148 (1990)ADSCrossRefGoogle Scholar
- 20.V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943 (1991)ADSCrossRefGoogle Scholar
- 21.V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czy zyk, G.A. Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48(23), 16929 (1993)Google Scholar
- 22.V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matt. 9(35), 7359 (1997)ADSCrossRefGoogle Scholar
- 23.A.I. Lichtenstein, M.I. Katsnelson, Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57(12), 6884 (1998)ADSCrossRefGoogle Scholar
- 24.S. Atwell, E. Meggers, G. Spraggon, P.G. Schultz, Structure of a copper-mediated base pair in DNA. J. Am. Chem. Soc. 123(49), 12364 (2001)CrossRefGoogle Scholar
- 25.D.D. O’Regan, N.D.M. Hine, M.C. Payne, A.A. Mostofi, Projector self-consistent DFT + U using nonorthogonal generalized Wannier functions. Phys. Rev. B 82(8), 081102 (2010)ADSCrossRefGoogle Scholar
- 26.L.V. Pourovskii, B. Amadon, S. Biermann, A. Georges, Self-consistency over the charge density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications. Phys. Rev. B 76(23), 235101 (2007)ADSCrossRefGoogle Scholar
- 27.D.D. O’Regan, M.C. Payne, A.A. Mostofi, Subspace representations in ab initio methods for strongly correlated systems. Phys. Rev. B 83(24), 245124 (2011)ADSCrossRefGoogle Scholar
- 28.V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matt. 9(4), 767 (1997)ADSCrossRefGoogle Scholar
- 29.A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52(8), R5467 (1995)ADSCrossRefGoogle Scholar
- 30.M.T. Czy zyk, G.A. Sawatzky, Local-density functional and on-site correlations: the electronic structure of \(\hbox{La}_{2}\hbox{CuO}_{4}\) and \(\hbox{LaCuO}_{3}\). Phys. Rev. B 49(20), 14211 (1994)Google Scholar
- 31.D.-K. Seo, Self-interaction correction in the LDA + U method. Phys. Rev. B 76, 033102 (2007)ADSCrossRefGoogle Scholar
- 32.R. McWeeny, Some recent advances in density matrix theory. Rev. Mod. Phys. 32(2), 335 (1960)MathSciNetADSCrossRefGoogle Scholar
- 33.X.-P. Li, R.W. Nunes, D. Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B 47(16), 10891 (1993)ADSCrossRefGoogle Scholar
- 34.R.W. Nunes, D. Vanderbilt, Generalization of the density-matrix method to a nonorthogonal basis. Phys. Rev. B 50(23), 17611 (1994)ADSCrossRefGoogle Scholar
- 35.M.S. Daw, Model for energetics of solids based on the density matrix. Phys. Rev. B 47(16), 10895 (1993)ADSCrossRefGoogle Scholar
- 36.P.D. Haynes, C.-K. Skylaris, A.A. Mostofi, M.C. Payne, Density kernel optimization in the ONETEP code. J. Phys. Condens. Matt. 20(29), 294207 (2008)CrossRefGoogle Scholar
- 37.C.A. White, P. Maslen, M.S. Lee, M. Head-Gordon, The tensor properties of energy gradients within a non-orthogonal basis. Chem. Phys. Lett. 276(1–2), 133 (1997)ADSCrossRefGoogle Scholar
- 38.F. Mauri, G. Galli, R. Car, Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys. Rev. B 47(15), 9973 (1993)ADSCrossRefGoogle Scholar
- 39.F. Mauri, G. Galli, Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B 50(7), 4316 (1994)ADSCrossRefGoogle Scholar
- 40.J. Kim, F. Mauri, G. Galli, Total-energy global optimizations using nonorthogonal localized orbitals. Phys. Rev. B 52(3), 1640 (1995)ADSCrossRefGoogle Scholar
- 41.P. Ordejón, D.A. Drabold, R.M. Martin, M.P. Grumbach, Linear system-size scaling methods for electronic-structure calculations. Phys. Rev. B 51(3), 1456 (1995)ADSCrossRefGoogle Scholar
- 42.D.A. Scherlis, M. Cococcioni, P. Sit, N. Marzari, Simulation of heme using DFT + U: a step toward accurate spin-state energetics. J. Phys. Chem. B 111(25), 7384 (2007)CrossRefGoogle Scholar
- 43.H.J. Kulik, N. Marzari, A self-consistent Hubbard U density-functional theory approach to the addition–elimination reactions of hydrocarbons on bare \(\hbox{FeO}^{+}\). J. Chem. Phys. 129(13), 134314 (2008)Google Scholar
- 44.H.J. Kulik, N. Marzari, Systematic study of first-row transition-metal diatomic molecules: a self-consistent DFT + U approach. J. Chem. Phy. 133(11), 114103 (2010)ADSCrossRefGoogle Scholar
- 45.H.J. Kulik, L.C. Blasiak, N. Marzari, C.L. Drennan, First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity. J. Am. Chem. Soc. 131(40), 14426 (2009)CrossRefGoogle Scholar
- 46.H. Hsu, K. Umemoto, M. Cococcioni, R. Wentzcovitch, First-principles study for low-spin \(\hbox{LaCoO}_{3}\) with a structurally consistent Hubbard U. Phys. Rev. B 79(12), 125124 (2009)Google Scholar
- 47.M.D. Towler, N.L. Allan, N.M. Harrison, V.R. Saunders, W.C. Mackrodt, E. Aprà, Ab initio study of MnO and NiO. Phys. Rev. B 50(8), 5041 (1994)ADSCrossRefGoogle Scholar
- 48.F. Aryasetiawan, O. Gunnarsson, Electronic structure of NiO in the GW approximation. Phys. Rev. Lett. 74(16), 3221 (1995)ADSCrossRefGoogle Scholar
- 49.X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, D. Vollhardt, LDA + DMFT computation of the electronic spectrum of NiO. Phys. Rev. B 74(19), 195114 (2006)ADSCrossRefGoogle Scholar
- 50.W.E. Pickett, S.C. Erwin, E.C. Ethridge, Reformulation of the LDA + U method for a local-orbital basis. Phys. Rev. B 58(3), 1201 (1998)ADSCrossRefGoogle Scholar
- 51.G.A. Sawatzky, J.W. Allen, Magnitude and origin of the band gap in NiO. Phys. Rev. Lett. 53(24), 2339 (1984)ADSCrossRefGoogle Scholar
- 52.O. Bengone, M. Alouani, P. Blöchl, J. Hugel, Implementation of the projector augmented-wave LDA + U method: application to the electronic structure of NiO. Phys. Rev. B 62(24), 16392 (2000)ADSCrossRefGoogle Scholar
- 53.S. López, A.H. Romero, J. Mejía-López, J. Mazo-Zuluaga, J. Restrepo, Structure and electronic properties of iron oxide clusters: a first-principles study. Phys. Rev. B 80(8), 085107 (2009)ADSCrossRefGoogle Scholar
- 54.K. Palotás, A.N. Andriotis, A. Lappas, Structural, electronic, and magnetic properties of nanometer-sized iron-oxide atomic clusters: comparison between GGA and GGA + U approaches. Phys. Rev. B 81(7), 075403 (2010)ADSCrossRefGoogle Scholar
- 55.T. Ozaki, Efficient recursion method for inverting an overlap matrix. Phys. Rev. B 64(19), 195110 (2001)ADSCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012