Towards Temporal Verification of Emergent Behaviours in Swarm Robotic Systems

  • Clare Dixon
  • Alan Winfield
  • Michael Fisher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)


A robot swarm is a collection of simple robots designed to work together to carry out some task. Such swarms rely on: the simplicity of the individual robots; the fault tolerance inherent in having a large population of often identical robots; and the self-organised behaviour of the swarm as a whole. Although robot swarms are being deployed in increasingly sophisticated areas, designing individual control algorithms that can guarantee the required global behaviour is difficult. In this paper we apply and assess the use of formal verification techniques, in particular that of model checking, for analysing the emergent behaviours of robotic swarms. These techniques, based on the automated analysis of systems using temporal logics, allow us to analyse all possible behaviours and so identify potential problems with the robot swarm conforming to some required global behaviour. To show this approach we target a particular swarm control algorithm, and show how automated temporal analysis can help to refine and analyse such an algorithm.


Mobile Robot Model Check Temporal Logic Wireless Range Emergent Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dang, T., Ivančić, F.: Counterexample-Guided Predicate Abstraction of Hybrid Systems. Theoretical Computer Science 354(2), 250–271 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arai, T., Pagello, E., Parker, L.: Editorial: Advances in Multi-Robot Systems. IEEE Trans. Robotics and Automation 18(5), 655–661 (2002)CrossRefGoogle Scholar
  3. 3.
    Beni, G.: From Swarm Intelligence to Swarm Robotics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bjerknes, J.D.: Scaling and Fault Tolerance in Self-organised Swarms of Mobile Robots. Ph.D. thesis, University of the West of England (2010)Google Scholar
  5. 5.
    Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O.: Avoiding The State Explosion Problem in Temporal Logic Model Checking. In: ACM Symposium on Principles of Distributed Computing (PODC), pp. 294–303 (1987)Google Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fainekos, G., Kress-Gazit, H., Pappas, G.: Temporal Logic Motion Planning for Mobile Robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2020–2025 (2005)Google Scholar
  10. 10.
    Hamann, H.: Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming. Cognitive Systems Monographs. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Henzinger, T., Ho, P.H., Wong-Toi, H.: HYTECH: A Model Checker for Hybrid Systems. International Journal on Software Tools for Technology Transfer 1(1-2), 110–122 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic Verification of Probabilistic Systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kloetzer, M., Belta, C.: Temporal Logic Planning and Control of Robotic Swarms by Hierarchical Abstractions. IEEE Transactions on Robotics 23, 320–330 (2007)CrossRefGoogle Scholar
  14. 14.
    Konur, S., Dixon, C., Fisher, M.: Formal Verification of Probabilistic Swarm Behaviours. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 440–447. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Martinoli, A., Easton, K., Agassounon, W.: Modeling Swarm Robotic Systems: A Case Study in Collaborative Distributed Manipulation. International Journal of Robotics Research 23(4), 415–436 (2004)CrossRefGoogle Scholar
  16. 16.
    Milutinovic, D., Lima, P.: Cells and Robots: Modeling and Control of Large-Size Agent Populations. Tracts in Advanced Robotics, vol. 32. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  17. 17.
    Nembrini, J.: Minimalist Coherent Swarming of Wireless Networked Autonomous Mobile Robots. Ph.D. thesis, University of the West of England (2005)Google Scholar
  18. 18.
    Sahin, E., Winfield, A.F.T.: Special issue on Swarm Robotics. Swarm Intelligence 2(2-4), 69–72 (2008)CrossRefGoogle Scholar
  19. 19.
    Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, Physics-Based Control of Swarms of Vehicles. Autonomous Robots 17(2-3), 137–162 (2004)CrossRefGoogle Scholar
  20. 20.
    Støy, K.: Using situated communication in distributed autonomous mobile robotics. In: SCAI 2001: Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence, pp. 44–52. IOS Press, Amsterdam (2001)Google Scholar
  21. 21.
    Truszkowski, W., Hallock, H., Rouff, C., Karlin, J., Rash, J., Hinchey, M., Sterritt, R.: Swarms in Space Missions. In: Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems. NASA Monographs in Systems and Software Eng., pp. 207–221. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Winfield, A., Liu, W., Nembrini, J., Martinoli, A.: Modelling a wireless connected swarm of mobile robots. Swarm Intelligence 2(2-4), 241–266 (2008)CrossRefGoogle Scholar
  23. 23.
    Winfield, A., Sa, J., Fernández-Gago, M.C., Dixon, C., Fisher, M.: On Formal Specification of Emergent Behaviours in Swarm Robotic Systems. International Journal of Advanced Robotic Systems 2(4), 363–370 (2005)CrossRefGoogle Scholar
  24. 24.
    Yuh, J.: Design and Control of Autonomous Underwater Robots: A Survey. Autonomous Robots 8(1), 7–24 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Clare Dixon
    • 1
  • Alan Winfield
    • 2
  • Michael Fisher
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK

Personalised recommendations