Task Space Integral Sliding Mode Controller Implementation for 4DOF of a Humanoid BERT II Arm with Posture Control

  • Said Ghani Khan
  • Jamaludin Jalani
  • Guido Herrmann
  • Tony Pipe
  • Chris Melhuish
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6856)


This paper presents the implementation (real time and simulation) of an integral sliding mode controller (ISMC) for the four degrees of freedom (DOF) of the humanoid BERT II robot arm, in order to deal with the inaccuracies and unmodelled nonlinearities in the dynamic model of the robot arm. This is a task space controller, tracking Cartesian coordinates x and y. The controller has been implemented using shoulder flexion, shoulder abduction, humeral rotation and elbow flexion joints of the BERT II right arm. The main controller is the combination of a feedback linearization (FL) scheme and an ISMC. The redundant DOF are controlled by a bio-mechanically inspired posture controller, to generate human like motion pattern based on recent work. Good real-time tracking results demonstrates effectiveness of the scheme.


Slide Mode Control Humanoid Robot Mode Controller Feedback Linearization Shoulder Abduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Sapio, V., Khatib, O., Delp, S.: Simulating the task level control of human motion: a methodology and framework for implementation. The Visual Computer 21(5), 289–302 (2005)CrossRefGoogle Scholar
  2. 2.
    Eker, I., Akinal, S.: Sliding mode control with integral augmented sliding surface: design and experimental application to an electromechanical system. Electrical Engineering (Archiv fur Elektrotechnik) 90, 189–197 (2008)CrossRefGoogle Scholar
  3. 3.
    Herrmann, G., Spurgeon, S., Edwards, C.: On robust, multi-input sliding-mode based control with a state-dependent boundary layer. Journal of Optimization Theory and Applications 129, 89–107 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jalani, J., Herrmann, G., Melhuish, C.: Concept for robust compliance control of robot fingers. In: 11th Conference Towards Autonomous Robotic Systems, Plymouth, UK, pp. 97–102 (2010)Google Scholar
  5. 5.
    Jalani, J., Herrmann, G., Melhuish, C.: Robust trajectory following for underactuated robot fingers. In: UKACC International Conference on Control, Conventry, UK (September 2010)Google Scholar
  6. 6.
    Khan, S., Herrmann, G., Pipe, T., Melhuish, C.: Adaptive multi-dimensional compliance control of a humanoid robotic arm with anti-windup compensation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2218–2223 (2010)Google Scholar
  7. 7.
    Khan, S.G., Herrmann, G., Pipe, T., Melhuish, C., Spiers, A.: Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control. International Journal of Social Robotics 2, 305–319 (2010)CrossRefGoogle Scholar
  8. 8.
    Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Jounrnal of Robotics and Automation RA3(1), 43–53 (1987)CrossRefGoogle Scholar
  9. 9.
    Makoto, Y., Gyu-Nam, K., Masahiko, T.: Integral sliding mode control with anti-windup compensation and its application to a power assist system. Journal of Vibration and Control (2009)Google Scholar
  10. 10.
    Nemec, B., Zlajpah, L.: Null space velocity control with dynamically consistent pseudo-inverse. Robotica 18(1), 513–518 (2000)CrossRefGoogle Scholar
  11. 11.
    Shi, J., Liu, H., Bajcinca, N.: Robust control of robotic manipulators based on integral sliding mode. International Journal of Control 81, 1537–1548 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Pearson Prentice Hall, Upper Saddle River (1991)zbMATHGoogle Scholar
  13. 13.
    Spiers, A., Herrmann, G., Melhuish, C.: Implementing discomfort in operational space: Practical application of a human motion inspired robot controller. In: TAROS Conference: Towards Autonomous Robotic Systems (August 2009)Google Scholar
  14. 14.
    Spiers, A., Herrmann, G., Melhuish, C., Pipe, T., Lenz, A.: Robotic implementation of realistic reaching motion using a sliding mode/operational space controller. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 230–238. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Spurgeon, S.K., Davies, R.: A nonlinear control strategy for robust sliding mode performance in the presence of unmatched uncertainty. International Journal of Control 57(5), 1107–1123 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th IEEE Decision and Control, vol. 4, pp. 4591–4596 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Said Ghani Khan
    • 1
  • Jamaludin Jalani
    • 2
  • Guido Herrmann
    • 2
  • Tony Pipe
    • 1
  • Chris Melhuish
    • 3
  1. 1.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK
  2. 2.Department of Mechanical Engineering and Bristol Robotics LaboratoryUniversity of BristolBristolUK
  3. 3.Bristol Robotics LaboratoryUniversity of Bristol and University of the West of EnglandBristolUK

Personalised recommendations