Skip to main content

Design and Control of an Upper Limb Exoskeleton Robot RehabRoby

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6856))

Abstract

In this work, an exoskeleton type robot-assisted rehabilitation system called RehabRoby is developed for rehabilitation purposes. A control architecture, which contains a high-level controller and a low-level controller, is designed for RehabRoby to complete the rehabilitation task in a desired and safe manner. A hybrid system modeling technique is used for high-level controller. An admittance control with inner robust position control loop has been used for the low-level control of RehabRoby. Real-time experiments are performed to evaluate the control architecture of the robot-assisted rehabilitation system RehabRoby.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rehabilitation Research and Training Center on Disability Statistics and Demographics, Annual Disability Statistics Compendium (2010), http://disabilitycompendium.org/Compendium2010.pdf

  2. Turkey Disability Survey, The State Institute of Statistics and The Presidency of Administration (2002)

    Google Scholar 

  3. Cromwell, S.A., Owen, P.: Treatment planning in Saunders Manuel of Physical Therapy Practice. In: Myers, R.S. (ed.), pp. 367–374. W.B. Saunders Company, Philadephia (1995)

    Google Scholar 

  4. Nef, T., Guidali, M., Riener, R.: ARMin III - arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics 6(2), 127–142 (2009)

    Article  Google Scholar 

  5. Housman, S.J., Le, V., Rahman, T., Sanchez, R.J., Reinkensmeyer, D.J.: Arm-Training with T-WREX After Chronic Stroke: Preliminary Results of a Randomized Controlled Trial. In: Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 562–568. IEEE Press, Noordwijk (2007)

    Chapter  Google Scholar 

  6. Sanchez, R.J., Wolbrecht, E., Smith, R., Liu, J., Rao, S., Cramer, S., Rahman, T., Bobrow, J.E., Reinkensmeyer, D.J.: A Pneumatic Robot for Re-Training Arm Movement after Stroke: Rationale and Mechanical Design. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, pp. 500–504. IEEE Press, Chicago (2005)

    Google Scholar 

  7. Frisoli, A., Borelli, L., Montagner, A., Marcheschi, S., Procopio, C., Salsedo, F., Bergamasco, M., Carboncinit, M.C., Tolainit, M., Rossit, B.: Arm rehabilitation with a robotic exoskeleleton in Virtual Reality. In: Proceedings of the 2007 IEEE 10th Inter. Conf. on Rehabilitation Robotics, pp. 631–642. IEEE Press, Noordwijk (2007)

    Chapter  Google Scholar 

  8. Kousidou, S., Tsagarakis, N.G., Smith, C., Caldwell, D.G.: Task-Oriented Biofeedback System for the Rehabilitation of the Upper Limb. In: Proc. of the 2007 IEEE 10th Inter. Conf. on Rehabilitation Robotics, pp. 12–15. IEEE Press, Noordwijk (2007)

    Google Scholar 

  9. Tsetserukoul, D., Tadakuma, R., Kajimoto, H., Kawakami, N., Tachi, S.: Towards Safe Human-RobotInteraction: Joint Impedance Control Towards Safe Human-Robot Interaction: Joint Impedance Control. In: Proc. of 16th IEEE International Conference on Robot & Human Interactive Communication, pp. 860–865. IEEE Press, Jeju (2007)

    Google Scholar 

  10. Fasoli, S.E., Krebs, H.I., Hogan, N.: Robotic technology and stroke rehabilitation: Translating research into practice. Top Stroke Rehabil. 11(4), 11–19 (2004)

    Article  Google Scholar 

  11. Oldewurtel, F., Mihelj, M., Nef, T., Riener, R.: Patient-Cooperative Control Strategies for Coordinated Functional Arm Movements. In: Proceedings of the European Control Conference, Kos, Greece, pp. 2527–2534 (2007)

    Google Scholar 

  12. Beyl, P., Knaepen, K., Duerinck, S., Van, D.M., Vanderborght, B., Lefeber, D.: Safe and compliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait. Advanced Robotics 25(5), 513–535 (2011)

    Article  Google Scholar 

  13. Emara, H., Elshafei, A.L.: Robust robot control enhanced by a hierarchical adaptive fuzzy algorithm. Engineering Applications of Artificial Intelligence 17, 187–198 (2004)

    Article  Google Scholar 

  14. Choi, C., Kwak, N.: Robust Control of Robot Manipulator by Model-Based Disturbance Attenuation. IEEE/ASME Transactions on Mechatronics 8(4), 511–513 (2003)

    Article  Google Scholar 

  15. Stasi, S., Salvatore, L., Milella, F.: Robust tracking control of robot manipulators via LKF-based estimator. In: Proc. of the IEEE International Symposium, pp. 1117–1124. IEEE Press, Bled (1999)

    Google Scholar 

  16. Salvatore, L., Stasi, S.: LKF based robust control of electrical servodrives. IEE Proceedings Electric Power Appl. 3(142), 161–168 (1995)

    Article  Google Scholar 

  17. Jung, S., Hsia, T.C.: Neural Network Impedance Force Control of Robot Manipulator. IEEE Transactions on Industrial Electronics 45(3), 451–461 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ozkul, F., Barkana, D.E. (2011). Design and Control of an Upper Limb Exoskeleton Robot RehabRoby. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23232-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23231-2

  • Online ISBN: 978-3-642-23232-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics