Skip to main content

A Cricket-Controlled Robot Orienting towards a Sound Source

  • Conference paper
Towards Autonomous Robotic Systems (TAROS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6856))

Included in the following conference series:

Abstract

We designed a closed-loop experimental setup that interfaces an insect with a robot for testing phonotaxis (sound recognition and localisation) behaviour in crickets. The experimental platform consists of a trackball mounted on a robot, so that a cricket walking on the trackball has its movements translated into corresponding movement of the robot. We describe the implementation of this system and compare the performance with previous cricket data and a neural model circuit on the same robot. Crickets are able to drive the robot towards the sound source, although they show substantially longer walking and stopping bouts than in more standard experimental setups. The potential and the current limitations of the robot setup together with alternative designs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asthenidis, A.: Cricket-Cyborg: an insect-controlled robot. Master’s thesis, School of Informatics, University of Edinburgh, Edinburgh, UK (2010)

    Google Scholar 

  2. Avago Technologies: ADNS-5020-EN Optical Mouse Sensor. Datasheet

    Google Scholar 

  3. Böhm, H., Schildberger, K., Huber, F.: Visual and acoustic course control in the cricket Gryllus-bimaculatus. Journal of Experimental Biology 159, 235–248 (1991)

    Google Scholar 

  4. Finio, B., Wood, R.: Distributed power and control actuation in the thoracic mechanics of a robotic insect. Bioinspiration and Biomimetics 5, 045006 (2010)

    Article  Google Scholar 

  5. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tache, F., Said, I., Durier, V., Canonge, S., Ame, J., Detrain, C., Correll, N., Martinoli, A., Mondada, F., Siegwart, R., Deneubourg, J.: Social integration of robots into groups of cockroaches to control self-organized choices. Science 318, 1155–1158 (2007)

    Article  Google Scholar 

  6. Hertz, G.: http://www.conceptlab.com/roachbot/

  7. Kanzaki, R., Nagasawa, S., Shimoyama, I.: Neural basis of odor-source searching behavior in insect brain systems evaluated with a mobile robot. Chemical Senses 30(suppl. 1), i285–i286 (2005)

    Article  Google Scholar 

  8. Kuwana, Y., Nagasawa, S., Shimoyama, I., Kanzaki, R.: Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosensors and Bioelectronics 14, 195–202 (1999)

    Article  Google Scholar 

  9. Lott, G., Rosen, M., Hoy, R.: An inexpensive sub-millisecond system for walking measurements of small animals based on optical computer mouse technology. Journal of Neuroscience Methods 161, 55–61 (2007)

    Article  Google Scholar 

  10. Payne, M., Hedwig, B., Webb, B.: Multimodal predictive control in crickets. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 167–177. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Poulet, J., Hedwig, B.: Auditory orientation in crickets: pattern recognition controls reactive steering. PNAS 102, 15665–15669 (2005)

    Article  Google Scholar 

  12. Reeve, R., Webb, B.: New neural circuits for robot phonotaxis. Philosophical Transactions of the Royal Society London A 361, 2245–2266 (2003)

    Article  MathSciNet  Google Scholar 

  13. Schmitz, B., Scharstein, H., Wendler, G.: Phonotaxis in Gryllus campestris l. I Mechanism of acoustic orientation in intact female crickets. Journal of Comparative Physiology A 148, 431–444 (1982)

    Article  Google Scholar 

  14. Webb, B.: Using robots to model animals: a cricket test. Robotics and Autonomous Systems 16, 117–134 (1995)

    Article  Google Scholar 

  15. Webb, B.: Neural mechanisms for prediction: do insects have forward models? Trends in Neuroscience 27(5), 278–282 (2004)

    Article  Google Scholar 

  16. Wessnitzer, J., Webb, B.: Multimodal sensory integration in insects - towards insect brain control architectures. Bioinspiration and Biomimetics 1(3), 63–75 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wessnitzer, J., Asthenidis, A., Petrou, G., Webb, B. (2011). A Cricket-Controlled Robot Orienting towards a Sound Source. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23232-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23231-2

  • Online ISBN: 978-3-642-23232-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics