A Comprehensive Survey on Fitness Landscape Analysis

  • Erik Pitzer
  • Michael Affenzeller
Part of the Studies in Computational Intelligence book series (SCI, volume 378)


In the past, the notion of fitness landscapes has found widespread adoption. Many different methods have been developed that provide a general and abstract framework applicable to any optimization problem. We formally define fitness landscapes, provide an in-depth look at basic properties and give detailed explanations and examples of existing fitness landscape analysis techniques. Moreover, several common test problems or model fitness landscapes that are frequently used to benchmark algorithms or analysis methods are examined and explained and previous results are consolidated and summarized. Finally, we point out current limitations and open problems pertaining to the subject of fitness landscape analysis.


Random Walk Local Optimum Solution Candidate Travel Salesman Problem Comprehensive Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer, Dordrecht (1987)CrossRefGoogle Scholar
  2. 2.
    Aita, T., Hayashi, Y., Toyota, H., Husimi, Y., Urabe, I., Yomo, T.: Extracting characteristic properties of fitness landscape from in vitro molecular evolution: A case study on infectivity of fd phage to E.coli. J. Theor. Biol. 246, 538–550 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Altenberg, L.: The Evolution of Evolvability in Genetic Programming. In: Advances in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)Google Scholar
  4. 4.
    Altenberg, L.: NK Fitness Landscapes. In: The Handbook of Evoluationary Computation, pp. B2.7.2:1–11. Oxford University Press, Oxford (1997)Google Scholar
  5. 5.
    Barnett, L.: Tangled Webs: Evolutionary Dynamics on Fitness Landscapes with Neutrality. MSc dissertation, School of Cognitive Sciences, University of East Sussex, Brighton (1997)Google Scholar
  6. 6.
    Barnett, L.: Ruggedness and neutrality—the NKp family of fitness landscapes. In: ALIFE, pp. 18–27. MIT Press, Cambridge (1998)Google Scholar
  7. 7.
    Borenstein, Y., Poli, R.: Decomposition of fitness functions in random heuristic search. In: Stephens, C.R., Toussaint, M., Whitley, L.D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 123–137. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.: Time Series Analysis: Forecasting & Control. Holden Day (1970)Google Scholar
  9. 9.
    Brandt, H., Dieckmann, U.: Correlation Analysis of Fitness Landscapes. Working papers, International Institute for Applied Systems Analysis (1999)Google Scholar
  10. 10.
    Chaitin, G.J.: Information, Randomness & Incompleteness. World Scientific, Singapore (1987)zbMATHGoogle Scholar
  11. 11.
    Collard, P., Verel, S., Clergue, M.: Local search heuristics: Fitness Cloud versus Fitness Landscape. In: ECAI, pp. 973–974. IOS Press, Amsterdam (2004)Google Scholar
  12. 12.
    Cordell, H.J.: Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet 11, 2463–2468 (2002)CrossRefGoogle Scholar
  13. 13.
    Czech, Z.: Statistical measures of a fitness landscape for the vehicle routing problem. In: IPDPS, pp. 1–8 (2008)Google Scholar
  14. 14.
    Davidor, Y.: Epistasis variance: suitability of a representation to genetic algorithms. Complex Systems 4, 369–383 (1990)Google Scholar
  15. 15.
    Derrida, B.: Random energy model: Limit of a family of disordered models. Phys. Rev. Lett. 45, 79–82 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Droste, S., Jansen, T., Wegener, I.: Perhaps Not a Free Lunch But At Least a Free Appetizer. In: GECCO, July 13-17, vol. 1, pp. 833–839. Morgan Kaufmann, San Francisco (1999)Google Scholar
  17. 17.
    Fonlupt, C., Robilliard, D., Preux, P.: Fitness Landscape and the Behavior of Heuristics. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 321–329. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Fontana, W., Stadler, P.F., Bornberg Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.: RNA folding and combinatory landscapes. Phys. Rev. E 47(3), 2083–2099 (1993)CrossRefGoogle Scholar
  19. 19.
    Gavrilets, S.: Evolution and Specitation in a Hyperspace: The Roles of Neutrality, Selection, Mutation and Random Drift. In: Evolutionary Dymaics: Exploring the Interplay of Selection, Accident, Neutrality and Function, pp. 135–162. Oxford University Press, Oxford (1999)Google Scholar
  20. 20.
    Geared, N., Wiles, J., Hallinan, J., Tonkes, B., Skellet, B.: A Comparison of Neutral Landscapes – NK, NKp and NKq. In: CEC, pp. 205–210. IEEE Press, Los Alamitos (2002)Google Scholar
  21. 21.
    Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, Accurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms. In: ICGA, pp. 56–64. Morgan Kaufmann, San Francisco (1993)Google Scholar
  22. 22.
    Gouvêa, F.Q.: p-adic Numbers: An Introduction. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  23. 23.
    Grefenstette, J.J.: Evolvability in Dynamic Fitness Landscapes: A Genetic Algorithm Approach. In: CEC, pp. 2031–2038 (1999)Google Scholar
  24. 24.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)zbMATHCrossRefGoogle Scholar
  25. 25.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  26. 26.
    Holland, J.H.: Evolution, Learning and Cognition, pp. 111–127. World Scientific, Singapore (1988)Google Scholar
  27. 27.
    Hordijk, W.: A measure of landscapes. Evol. Comput. 4(4), 335–360 (1996)CrossRefGoogle Scholar
  28. 28.
    Huynen, M.A.: Exploring phenotype space through neutral evolution. J. Mol. Evol. 43, 165–169 (1996)CrossRefGoogle Scholar
  29. 29.
    Huynen, M.A., Stadler, P.F., Fontana, W.: Smoothness within ruggedness: The role of neutrality in adaptation. P. Natl. Acad. Sci. USA 93, 397–401 (1996)CrossRefGoogle Scholar
  30. 30.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. thesis, University of New Mexico, Albuquerque, New Mexico (1995)Google Scholar
  31. 31.
    Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In: ICGA, pp. 184–192. Morgan Kaufmann, San Francisco (1995)Google Scholar
  32. 32.
    Kallel, L., Naudts, B., Schoenauer, M.: On functions with a given fitness-distance relation. In: CEC, vol. 3, pp. 1910–1916 (1999)Google Scholar
  33. 33.
    Katada, Y.: Estimating the Degree of Neutrality in Fitness Landscapes by the Nei’s Standard Genetic Distance – An Application to Evolutionary Robotics. In: CEC, pp. 483–490 (2006)Google Scholar
  34. 34.
    Katada, Y., Ohkura, K., Ueda, K.: The Nei’s standard genetic distance in artificial evolution. In: CEC, pp. 1233–1239 (2004)Google Scholar
  35. 35.
    Kauffman, S.: Adaptation on rugged fitness landscapes. Lectures in the Sciences of Complexity, vol. 1, pp. 527–618. Addison-Wesley Longman, Amsterdam (1989)Google Scholar
  36. 36.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)Google Scholar
  37. 37.
    Kimura, M.: Evolutionary Rate at the Molecular Level. Nature 217, 624–626 (1968)CrossRefGoogle Scholar
  38. 38.
    Koopmans, T.C., Beckmann, M.: Assignment Problems and the Location of Economic Activities. Econometrica 25(1), 53–76 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)zbMATHGoogle Scholar
  40. 40.
    Le, M.N., Ong, Y.-S., Jin, Y., Sendhoff, B.: Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comp. 1, 175–190 (2009)CrossRefGoogle Scholar
  41. 41.
    Lehn, R., Kuntz, P.: A contribution to the study of the fitness landscape for a graph drawing problem. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoWorkshops 2001. LNCS, vol. 2037, p. 172. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  42. 42.
    Lipsitch, M.: Adaptation on rugged landscapes generated by iterated local interactions of neighboring genes. In: ICGA, vol. 135, pp. 128–135 (1991)Google Scholar
  43. 43.
    Manderick, B., de Weger, M.K., Spiessens, P.: The Genetic Algorithm and the Structure of the Fitness Landscape. In: ICGA, pp. 143–150 (1991)Google Scholar
  44. 44.
    Marrow, P.: Evolvability: Evolution, Computation, Biology. In: GECCO, pp. 30–33 (1999)Google Scholar
  45. 45.
    Mathias, K., Whitley, L.D.: Genetic operators, the fitness landscape and the traveling salesman problem. In: Parallel Problem Solving From Nature, vol. 2, pp. 219–228 (1992)Google Scholar
  46. 46.
    Mattfeld, D.C., Bierwirth, C.: A Search Space Analysis of the Job Shop Scheduling Problem. Ann. Oper. Res. 86, 441–453 (1996)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput. 12(3), 303–325 (2004)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Merz, P., Freisleben, B.: Memetic Algorithms and the Fitness Landscape of the Graph Bi-Partitioning Problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 765–774. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  49. 49.
    Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE T. Evolut. Comput. 4(4), 337–352 (2000)CrossRefGoogle Scholar
  50. 50.
    Merz, P., Freisleben, B.: Memetic Algorithms for the Traveling Salesmen Problem. Complex Systems 13(4), 297–345 (2001)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Moraglio, A., Poli, R.: Topological interpretation of crossover. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  52. 52.
    Moraglio, A., Poli, R.: Topological Crossover for the Permutation Representation. In: GECCO 2005, pp. 332–338 (2005)Google Scholar
  53. 53.
    Munkres, J.R.: Topology. Prentice-Hall, Englewood Cliffs (2000)zbMATHGoogle Scholar
  54. 54.
    Naudts, B.: Measuring GA-hardness. Ph.D. thesis, University of Antwerp (June 1998)Google Scholar
  55. 55.
    Naudts, B., Kallel, L.: A Comparison of Predictive Measures of Problem Difficulty in Evolutionary Algorithms. IEEE T. Evolut. Comput. 4(1), 1–15 (2000)CrossRefGoogle Scholar
  56. 56.
    Naudts, B., Verschoren, A.: Epistasis and Deceptivity. B Belg. Math. Soc-Sim 6(1), 147–154 (1999)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Nei, M.: Genetic distance between populations. Am. Nat. 106, 283–292 (1972)CrossRefGoogle Scholar
  58. 58.
    Newman, M.E.J., Engelhardt, R.: Effects of selective neutrality on the evolution of molecular species. Proc. R Soc. Lond B 265, 1333–1338 (1998)CrossRefGoogle Scholar
  59. 59.
    Ochoa, G., Qu, R., Burke, E.K.: Analyzing the landscape of a graph based hyper-heuristic for timetabling problems. In: GECCO 2009, pp. 341–348. ACM, New York (2009)CrossRefGoogle Scholar
  60. 60.
    Ohta, T.: The Nearly Neutral Theory of Molecular Evolution. Annu. Rev. Ecol. Syst. 23, 263–286 (1992)CrossRefGoogle Scholar
  61. 61.
    Ohta, T.: The neutral theory is dead. The current significance and standing of neutral and nearly neutral theories. BioEssays 18(8), 673–677 (1996)CrossRefGoogle Scholar
  62. 62.
    Ohta, T.: Evolution by nearly-neutral mutations. Genetica 102/103, 89–90 (1998)CrossRefGoogle Scholar
  63. 63.
    Pitzer, E., Affenzeller, M., Beham, A.: A Closer Look Down the Basins of Attraction. In: UKCI, Colchester, UK, pp. 1–6 (2010)Google Scholar
  64. 64.
    Provine, W.B.: Sewall Wright and Evolutionary Biology. University of Chicago Press, Chicago (1989)Google Scholar
  65. 65.
    Quick, R.J., Rayward-Smith, V.J., Smith, G.D.: Fitness Distance Correlation and Ridge Functions. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 77–86. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  66. 66.
    Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog (1973)Google Scholar
  67. 67.
    Reeves, C.R., Rowe, J.E.: Genetic Algorithms—Principles and Perspectives. Kluwer, Dordrecht (2003)Google Scholar
  68. 68.
    Reeves, C.R., Wright, C.C.: Epistasis in Genetic Algorithms: An Experimental Design Perspective. In: ICGA, pp. 217–224. Morgan Kaufmann, San Francisco (1995)Google Scholar
  69. 69.
    Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Appl. Math. Comput. 117(2-3), 321–350 (1998)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Reidys, C.M., Stadler, P.F.: Combinatorial Fitness Landscapes. SIAM Rev. 44, 3–54 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Rochet, S.: Epistasis in genetic algorithms revisited. Inform. Sciences 102(1-4), 133–155 (1997)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Rochet, S., Venturini, G., Slimane, M., El Kharoubi, E.M.: A Critical and Empirical Study of Epistasis Measures for Predicting GA Performances: A Summary. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 275–286. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  73. 73.
    Rockmore, D., Kostelec, P., Hordijk, W., Stadler, P.F.: Fast Fourier Transform for Fitness Landscapes. Appl. Comput. Harmon A 12(1), 57–76 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Saitou, N., Nei, M.: The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 4(4), 406–425 (1987)Google Scholar
  75. 75.
    Shannon, C.E.: A Mathematical Theory of Communication. AT&T Tech. J. 27, 379–423, 623–656 (1948)MathSciNetGoogle Scholar
  76. 76.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1795 (1975)CrossRefGoogle Scholar
  77. 77.
    Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. Comput. 10(1), 1–34 (2002)CrossRefGoogle Scholar
  78. 78.
    Stadler, P., Wagner, G.: The Algebraic Theory of Recombination Spaces. Evol. Comput. 5, 241–275 (1998)CrossRefGoogle Scholar
  79. 79.
    Stadler, P.F.: Linear Operators on Correlated Landscapes. J. Phys. I 4, 681–696 (1994)CrossRefGoogle Scholar
  80. 80.
    Stadler, P.F.: Towards a Theory of Landscapes. Lecture Notes in Physics, vol. 461, pp. 78–163. Springer, Heidelberg (1995)Google Scholar
  81. 81.
    Stadler, P.F.: Landscapes and Their Correlation Functions. J. Math. Chem. 20, 1–45 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Stadler, P.F.: Fitness Landscapes. In: Biological Evolution and Statistical Physics, pp. 187–207. Springer, Heidelberg (2002)Google Scholar
  83. 83.
    Stadler, P.F., Happel, R.: Random field models for fitness landscapes. Working Papers 95-07-069, Santa Fe Institute, Santa Fe, NM (1995)Google Scholar
  84. 84.
    Stadler, P.F., Schnabl, W.: The Landscape of the Travelling Salesmand Problem. Phys. Lett. A 161, 337–344 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Stadler, P.F., Seitz, R., Wagner, G.P.: Evolvability of Complex Characters: Population Dependent Fourier Decomposition of Fitness Landscapes over Recombination Spaces. B Math. Biol. 62, 399–428 (2000)CrossRefGoogle Scholar
  86. 86.
    Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Chichester (2009)zbMATHGoogle Scholar
  87. 87.
    Tavares, J., Pereira, F., Costa, E.: Multidimensional Knapsack Problem: A Fitness Landscape Analysis. IEEE T. Syst. Man Cy. B 38(3), 604–616 (2008)CrossRefGoogle Scholar
  88. 88.
    Thompson, R.K., Wright, A.H.: Additively Decomposable Fitness Functions. Tech. rep., University of Montan, Computer Science Dept., Missoula, MT, USA (1996)Google Scholar
  89. 89.
    Turney, P.: Increasing evolvability considered as a large-scale trend in evolution. In: GECCO, pp. 43–46 (1999)Google Scholar
  90. 90.
    Uludağ, G., Uyar, A.Ş.: Fitness Landscape Analysis of Differential Evolution Algorithms. In: ICSCCW (2009)Google Scholar
  91. 91.
    Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness Clouds and Problem Hardness in Genetic Programming. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 690–701. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  92. 92.
    Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient: A measure to characterize genetic programming fitness landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  93. 93.
    Vanneschi, L., Verel, S., Tomassini, M., Collard, P.: NK Landscapes Difficulty and Negative Slope Coefficient: How Sampling Influences the Results. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 645–654. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  94. 94.
    Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information Characteristics and the Structure of Landscapes. Evol. Comput. 8(1), 31–60 (2000)CrossRefGoogle Scholar
  95. 95.
    Wagner, A.: Robustness, evolvability, and neutrality. FEBS Lett. 579, 1772–1778 (2005)CrossRefGoogle Scholar
  96. 96.
    Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R Soc. B 275, 91–100 (2008)CrossRefGoogle Scholar
  97. 97.
    Wagner, G., Stadler, P.: Complex Adaptations and the Structure of Recombination Spaces. In: Algebraic Engineering, pp. 96–115. World Scientific, Singapore (1998)Google Scholar
  98. 98.
    Wagner, G.P., Altenberg, L.: Complex Adaptations and the Evoluation of Evolvability. Evolution 50(3), 967–976 (1996)CrossRefGoogle Scholar
  99. 99.
    Wang, S., Zhu, Q., Kang, L.: Landscape Properties and Hybrid Evolutionary Algorithm for Optimum Multiuser Detection Problem. In: ICCSA, pp. 340–347 (2006)Google Scholar
  100. 100.
    Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)zbMATHCrossRefGoogle Scholar
  101. 101.
    Weinberger, E.D.: Local properties of Kauffman’s N-k model, a tuneably rugged energy landscape. Phys. Rev. A 44(10), 6399–6413 (1991)CrossRefGoogle Scholar
  102. 102.
    Weinberger, E.D.: NP Completeness of Kauffman’s N-k Model, A Tuneable Rugged Fitness Landscape. Working Papers 96-02-003, Santa Fe Institute (1996)Google Scholar
  103. 103.
    Wright, S.: The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. In: 6th International Congress of Genetics, vol. 1, pp. 356–366 (1932)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erik Pitzer
    • 1
  • Michael Affenzeller
    • 1
  1. 1.Josef Ressel Center “Heureka!”, School of Informatics, Communications and MediaUpper Austria University of Applied SciencesHagenbergAustria

Personalised recommendations