Advertisement

Multiobjective Differential Evolution Algorithm with Self-Adaptive Learning Process

  • Andrzej Cichoń
  • Ewa Szlachcic
Part of the Studies in Computational Intelligence book series (SCI, volume 378)

Abstract

This chapter presents an efficient strategy for self-adaptation mechanisms in a multiobjective differential evolution algorithm. The algorithm uses parameters adaptation and operates with two differential evolution schemes. Also, a novel DE mutation scheme combined with a transversal individual idea is introduced to support the convergence rate of the algorithm. The performance of the proposed algorithm, named DEMOSA, is tested on a set of benchmark problems. The numerical results confirm that the proposed algorithm performs considerably better than the one with simple DE scheme in terms of computational cost and quality of the identified nondominated solutions sets.

Keywords

Differential Evolution Pareto Front Multiobjective Optimization Differential Evolution Algorithm Multiobjective Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbass, H.A., Sarker, R., Newton, C.: PDE: A Pareto-frontier Differential Evolution Approach for Multi-objective Optimization Problems. IEEE Congr. Evol. Comput. 2, 971–978 (2001)Google Scholar
  2. 2.
    Abbass, H.A.: The Self-Adaptive Pareto Differential Evolution Algorithm. In: IEEE Congr. Evol. Comput., CEC 2002, vol. 1, pp. 831–836 (2002)Google Scholar
  3. 3.
    Brest, J., Greiner, S., Boškowić, B., Mernik, M.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 10(6) (2006)Google Scholar
  4. 4.
    Cichoń, A., Kotowski, J.F., Szlachcic, E.: Differential evolution for multi-objective optimization with self-adaptation. In: IEEE Int. Conf. Intell. Eng. Syst., Las Palmas of Gran Canaria, Spain, pp. 165–169 (2010)Google Scholar
  5. 5.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems, 2nd edn. Genetic and Evolutionary Computation Series. Springer Science+Business Media, New York (2007)zbMATHGoogle Scholar
  6. 6.
    Das, S., Abraham, A., Konar, A.: Particle swarm optimization and differential evolution algorithms: Technical analysis, applications and hybridization perspectives. J. Stud. Comput. Intell. 116, 1–38 (2008)CrossRefGoogle Scholar
  7. 7.
    Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of tests problems. Evol. Comput. 7(3), 205–230 (1999)CrossRefGoogle Scholar
  8. 8.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2) (2001)Google Scholar
  9. 9.
    Feoktistov, V.: Differential Evolution. In: Search of Solutions. Springer Science + Business Media, New York (2006)Google Scholar
  10. 10.
    Gaemperle, R., Mueller, S.D., Koumoutsakos, P.: A parameter study for differential evolution. In: Gmerla, A., Mastorakis, N.E. (eds.) Advances in intelligent systems, fuzzy systems, evolutionary computation, pp. 293–298. WSEAS Press (2002)Google Scholar
  11. 11.
    Knowles, J.D., Corne, D.W.: Approximating the Non-dominated Front Using the Pareto Archived Evolution Strategy. Evol. Comput. 8(2), 149–172 (2000)CrossRefGoogle Scholar
  12. 12.
    Konak, A., Coit, D., Smith, A.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 992–1007 (2006)Google Scholar
  13. 13.
    Kukkonen, S., Lampinen, J.: An extension of generalized differential evolution for multi-objective optimization with constraints. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 752–761. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Lai, J.C.Y., Leung, F.H.F., Ling, S.H.: A New Differential Evolution with Wavelet Theory Based Mutation Operation. In: IEEE Congr. Evol. Comput (CEC 2009), pp. 1116–1122 (2009)Google Scholar
  15. 15.
    Mezura-Montes, E., Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution, pp. 173–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Neri, F., Tirronen, V., Rossi, T.: Enhancing Differential Evolution Frameworks by Scale Factor Local Search – Part I. In: IEEE Congr. Evol. Comput (CEC 2009), pp. 94–101 (2009)Google Scholar
  17. 17.
    Neri, F., Tirronen, V., Käkkäinen, T.: Enhancing Differential Evolution Frameworks by Scale Factor Local Search – Part II. In: IEEE Congr. Evol. Comput., pp. 118–125 (2009)Google Scholar
  18. 18.
    Pant, M., Thangaraj, R., Abraham, A., Grosan, C.: Differential Evolution with Laplace Mutation Operator. In: IEEE Congr. Evol. Comput., pp. 2841–2849 (2009)Google Scholar
  19. 19.
    Price, K.V., Storn, R.: Differential Evolution – a simple evolution strategy for fast optimization. Dr. Dobb’s Journal 22, 18–24 (1997)Google Scholar
  20. 20.
    Price, K.V., Storn, R., Lampinen, J.A.: Differential Evolution. A Practical Approach to Global Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  21. 21.
    Qin, A.K., Suganthan, P.N.: Self-adaptive Differential Evolution Algorithm for Numerical Optimization. In: IEEE Congr. Evol. Comput., vol. 2, pp. 1785–1791 (2005)Google Scholar
  22. 22.
    Ali, M., Pant, M., Singh, V.P.: A Modified Differential Evolution Algorithm with Cauchy Mutation for Global Optimization. In: Ranka, S., Aluru, S., Buyya, R., Chung, Y.-C., Dua, S., Grama, A., Gupta, S.K.S., Kumar, R., Phoha, V.V. (eds.) IC3 2009. Communications in Computer and Information Science, vol. 40, pp. 127–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Santana-Quintero, L.V., Hernandez-Diaz, A.G., Molina, J., Coello Coello, C.A.: DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems. Computers & Operations Research 37, 470–480 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Thiele, L., Miettinen, K., Korhonen, P., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. J. Evol. Comput. 17(3), 411–436 (2007)CrossRefGoogle Scholar
  26. 26.
    Villalobos Arias, M.A.: Análisis de Heurísticas de Optimización para Problemas Multiobjetivo, PhD Thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacionál, Departamento de Matemáticas, México (2005)Google Scholar
  27. 27.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multi-objective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  28. 28.
    Zitzler, E., Laumans, M., Thiele, L.: Improving the strength Pareto evolutionary algorithm for multi-objective optimization. In: Evolutionary methods for design, optimization and control with application to industrial problems, Barcelona, pp. 95–100 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrzej Cichoń
    • 1
  • Ewa Szlachcic
    • 1
  1. 1.Institute of Computer Engineering, Control and RoboticsWroclaw University of TechnologyWroclawPoland

Personalised recommendations