Analysis of Allele Distribution Dynamics in Different Genetic Algorithms

  • Michael Affenzeller
  • Stefan Wagner
  • Stephan M. Winkler
  • Andreas Beham
Part of the Studies in Computational Intelligence book series (SCI, volume 378)

Abstract

This chapter exemplarily points out how essential genetic information evolves during the runs of certain selected variants of a genetic algorithm. The discussed algorithmic enhancements to a standard genetic algorithm are motivated by Holland’s schema theory and the according building block hypothesis. The discussed offspring selection and the relevant alleles preserving genetic algorithm certify the survival of essential genetic information by supporting the survival of relevant alleles rather than the survival of above average chromosomes. This is achieved by defining the survival probability of a new child chromosome depending on the child’s fitness in comparison to the fitness values of its own parents. By this means the survival and expansion of essential building block information information is supported also for problem representations and algorithmic settings which do not fulfill the theoretical requirements of the schema theory. The properties of these GA variants are analyzed empirically. The selected analysis method assumes the knowledge of the unique globally optimal solution and is therefore restricted to rather theoretical considerations. The main aim of this chapter is to motivate and discuss the most important properties of the discussed algorithm variants in a rather intuitive way. Aspects for meaningful and practically more relevant generalizations as well as more sophisticated experimental analyses are indicated.

Keywords

Genetic Algorithm Crossover Operator Success Ratio Premature Convergence Offspring Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Affenzeller, M., Wagner, S., Winkler, S.M., Beham, A.: Analysis of the dynamics of allele distribution for some selected ga-variants. In: Proceedings of the 14th International Conference on Intelligent Engineering Systems (INES), pp. 13–18. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar
  2. 2.
    Affenzeller, M., Wagner, S.: SASEGASA: A new generic parallel evolutionary algorithm for achieving highest quality results. Journal of Heuristics - Special Issue on New Advances on Parallel Meta-Heuristics for Complex Problems 10, 239–263 (2004)Google Scholar
  3. 3.
    Affenzeller, M., Wagner, S., Winkler, S.M.: Goal-oriented preservation of essential genetic information by offspring selection. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), vol. 2, pp. 1595–1596. Association for Computing Machinery (ACM), New York (2005)CrossRefGoogle Scholar
  4. 4.
    Affenzeller, M., Wagner, S., Winkler, S.M.: Self-adaptive population size adjustment for genetic algorithms. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 820–828. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Affenzeller, M., Winkler, S.M., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. CRC Press, Boca Raton (2009)MATHCrossRefGoogle Scholar
  6. 6.
    Affenzeller, M., Beham, A., Kofler, M., Kronberger, G., Wagner, S., Winkler, S.M.: Metaheuristic Optimization. In: Hagenberg Research Software Engineering, pp. 103–155. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley Interscience, Hoboken (2005)MATHCrossRefGoogle Scholar
  8. 8.
    Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Cavicchio, D.: Adaptive Search Using Simulated Evolution. PhD thesis, University of Michigan (1975)Google Scholar
  10. 10.
    DeJong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan (1975)Google Scholar
  11. 11.
    Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks 5(1), 3–14 (1994)CrossRefGoogle Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman, Amsterdam (1989)MATHGoogle Scholar
  13. 13.
    Holland, J.H.: Adaption in Natural and Artifical Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  14. 14.
    Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, D.: Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review 13, 129–170 (1999)CrossRefGoogle Scholar
  15. 15.
    Lobo, F.G., Goldberg, D.: The parameter-less genetic algorithm in practice. Information Sciences 167(1-4), 217–232 (2004)MATHCrossRefGoogle Scholar
  16. 16.
    Rechenberg, I.: Evolutionsstrategie. Friedrich Frommann Verlag (1973)Google Scholar
  17. 17.
    Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on Computing 3, 376–384 (1991)MATHGoogle Scholar
  18. 18.
    Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser Verlag, Switzerland (1994)Google Scholar
  19. 19.
    Smith, R.E., Forrest, S., Perelson, A.S.: Population diversity in an immune systems model: Implications for genetic search. In: Foundations of Genetic Algorithms, vol. 2, pp. 153–166. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  20. 20.
    Stephens, C.R., Waelbroeck, H.: Schemata evolution and building blocks. Evolutionary Computation 7(2), 109–124 (1999)CrossRefGoogle Scholar
  21. 21.
    Wagner, S., Affenzeller, M.: SexualGA: Gender-specific selection for genetic algorithms. In: Callaos, N., Lesso, W., Hansen, E. (eds.) Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2005), vol. 4, pp. 76–81. International Institute of Informatics and Systemics (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Affenzeller
    • 1
  • Stefan Wagner
    • 1
  • Stephan M. Winkler
    • 1
  • Andreas Beham
    • 1
  1. 1.Heuristic and Evolutionary Algorithms Laboratory, School of Informatics, Communications and MediaUpper Austria University of Applied SciencesHagenbergAustria

Personalised recommendations