Causal Nets: A Modeling Language Tailored towards Process Discovery

  • Wil van der Aalst
  • Arya Adriansyah
  • Boudewijn van Dongen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)


Process discovery—discovering a process model from example behavior recorded in an event log—is one of the most challenging tasks in process mining. The primary reason is that conventional modeling languages (e.g., Petri nets, BPMN, EPCs, and ULM ADs) have difficulties representing the observed behavior properly and/or succinctly. Moreover, discovered process models tend to have deadlocks and livelocks. Therefore, we advocate a new representation more suitable for process discovery: causal nets. Causal nets are related to the representations used by several process discovery techniques (e.g., heuristic mining, fuzzy mining, and genetic mining). However, unlike existing approaches, we provide declarative semantics more suitable for process mining. To clarify these semantics and to illustrate the non-local nature of this new representation, we relate causal nets to Petri nets.


Input Place Business Process Modeling Notation Valid Sequence Conformance Check Book Hotel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of Computing 23(3), 333–363 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance Checking. In: Muehlen, M.z., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Bruni, R., Montanari, U.: Zero-Safe Nets: Comparing the Collective and Individual Token Approaches. Information and Computation 156(1-2), 46–89 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dehnert, J., van der Aalst, W.M.P.: Bridging the Gap Between Business Models and Workflow Specifications. International Journal of Cooperative Information Systems 13(3), 289–332 (2004)CrossRefGoogle Scholar
  7. 7.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  10. 10.
    Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). BETA Working Paper Series, WP 334. Eindhoven University of Technology, Eindhoven (2010)Google Scholar
  11. 11.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discovery using Integer Linear Programming. Fundamenta Informaticae 94, 387–412 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wil van der Aalst
    • 1
  • Arya Adriansyah
    • 1
  • Boudewijn van Dongen
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenThe Netherlands

Personalised recommendations