The Decidability of the Reachability Problem for CCS!

  • Chaodong He
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)

Abstract

CCS! is a variant of CCS in which infinite behaviors are defined by the replication operator. We show that the reachability problem for CCS! is decidable by a reduction to the same problem for Petri Nets.

Keywords

Induction Step Expressive Power Characteristic Context Label Transition System Target Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acciai, L., Boreale, M.: Spatial and behavioral types in the pi-calculus. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 372–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Acciai, L., Boreale, M.: Deciding safety properties in infinite-state pi-calculus via behavioural types. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 31–42. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Aranda, J., Di Giusto, C., Nielsen, M., Valencia, F.D.: CCS with replication in the chomsky hierarchy: The expressive power of divergence. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 383–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Aranda, J., Valencia, F.D., Versari, C.: On the expressive power of restriction and priorities in CCS with replication. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 242–256. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in channel based calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and iteration in process calculi. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, replication and iteration in process calculi. Mathematical Structures in Computer Science 19(6), 1191–1222 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Busi, N., Gorrieri, R.: Distributed conflicts in communicating systems. In: Pareschi, R. (ed.) ECOOP 1994. LNCS, vol. 821, pp. 49–65. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Fu, Y.: Theory of interaction (2011), Submitted and downloadable at http://basics.sjtu.edu.cn/~yuxi/
  10. 10.
    Fu, Y., Lu, H.: On the expressiveness of interaction. Theor. Comput. Sci. 411(11-13), 1387–1451 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Giambiagi, P., Schneider, G., Valencia, F.D.: On the expressiveness of infinite behavior and name scoping in process calculi. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 226–240. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Goltz, U.: CCS and petri nets. In: Semantics of Systems of Concurrent Processes, pp. 334–357 (1990)Google Scholar
  13. 13.
    He, C.: The decidability of the reachability problem for CCS! (2011), Downloadable at http://basics.sjtu.edu.cn/~chaodong/
  14. 14.
    He, C., Fu, Y., Fu, H.: Decidability of behavioral equivalences in process calculi with name scoping. In: FSEN (2011)Google Scholar
  15. 15.
    Jancar, P., Moller, F.: Checking regular properties of petri nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 348–362. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Křetínský, M., Řehák, V., Strejček, J.: Extended process rewrite systems: Expressiveness and reachability. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 355–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Křetínský, M., Řehák, V., Strejček, J.: Reachability of hennessy-milner properties for weakly extended PRS. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 213–224. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Mayr, E.W.: An algorithm for the general petri net reachability problem. In: STOC, pp. 238–246 (1981)Google Scholar
  19. 19.
    Mayr, R.: Process rewrite systems. Inf. Comput. 156(1-2), 264–286 (2000)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)MATHGoogle Scholar
  21. 21.
    Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  22. 22.
    Park, D.M.R.: Concurrency and automata on infinite sequences. Theoretical Computer Science, 167–183 (1981)Google Scholar
  23. 23.
    Taubner, D.: Finite Representations of CCS and TCSP Programs by Automata and Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chaodong He
    • 1
  1. 1.BASICS, Department of Computer Science, MOE-MS Key Laboratory for Intelligent Computing and Intelligent SystemsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations