Advertisement

Parameterized Complexity Results for 1-safe Petri Nets

  • M. Praveen
  • Kamal Lodaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)

Abstract

We associate a graph with a 1-safe Petri net and study the parameterized complexity of various problems with parameters derived from the graph. With treewidth as the parameter, we give W[1]-hardness results for many problems about 1-safe Petri nets. As a corollary, this proves a conjecture of Downey et. al. about the hardness of some graph pebbling problems. We consider the parameter benefit depth (that is known to be helpful in getting better algorithms for general Petri nets) and again give W[1]-hardness results for various problems on 1-safe Petri nets.We also consider the stronger parameter vertex cover number. Combining the well known automata-theoretic method and a powerful fixed parameter tractability (Fpt) result about Integer Linear Programming, we give a Fpt algorithm for model checking Monadic Second Order (MSO) formulas on 1-safe Petri nets, with parameters vertex cover number and the size of the formula.

Keywords

Model Check Vertex Cover Linear Temporal Logic Primal Graph Path Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Alg. 21(2), 358–402 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Logic, Methodology, Philosophy and Science, pp. 1–11. Stanford Univ. Press, Stanford (1962)Google Scholar
  3. 3.
    Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Demri, S., Laroussinie, F., Schnoebelen, P.: A parametric analysis of the state-explosion problem in model checking. J. Comput. Syst. Sci. 72(4), 547–575 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. DIMACS, vol. 49, pp. 49–100 (1999)Google Scholar
  7. 7.
    Drusinsky, D., Harel, D.: On the power of bounded concurrency I: Finite automata. J. Assoc. Comput. Mach. 41(3), 517–539 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Esparza, J.: Decidability and complexity of Petri net problems — An introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and Computation 187(2), 291–319 (2003)Google Scholar
  11. 11.
    Frank, A., Tardos, E.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Habermehl, P.: On the complexity of the linear-time μ-calculus for Petri-nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Meyer, A.R.: Weak monadic second order theory of succesor is not elementary-recursive. In: Proc. Logic Colloquium. Lecture Notes in Mathematics, vol. 453, pp. 132–154 (1975)Google Scholar
  16. 16.
    Praveen, M.: Does treewidth help in modal satisfiability? (extended abstract). In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 580–591. Springer, Heidelberg (2010), Full version http://arxiv.org/abs/1006.2461
  17. 17.
    Praveen, M.: Small vertex cover makes petri net coverability and boundedness easier. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 216–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Praveen, M., Lodaya, K.: Modelchecking counting properties of 1-safe nets with buffers in parapspace. In: FSTTCS. LIPIcs, vol. 4, pp. 347–358 (2009)Google Scholar
  19. 19.
    Rackoff, C.: The covering and boundedness problems for vector addition systems. Theoret. Comp. Sci. 6, 223–231 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Reutenauer, C.: The mathematics of Petri nets (1990); translated by Craig, I.Google Scholar
  21. 21.
    Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Praveen
    • 1
  • Kamal Lodaya
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations