Advertisement

On Locality and the Exchange Law for Concurrent Processes

  • C. A. R. Hoare
  • Akbar Hussain
  • Bernhard Möller
  • Peter W. O’Hearn
  • Rasmus Lerchedahl Petersen
  • Georg Struth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)

Abstract

This paper studies algebraic models for concurrency, in light of recent work on Concurrent Kleene Algebra and Separation Logic. It establishes a strong connection between the Concurrency and Frame Rules of Separation Logic and a variant of the exchange law of Category Theory. We investigate two standard models: one uses sets of traces, and the other is state-based, using assertions and weakest preconditions. We relate the latter to standard models of the heap as a partial function. We exploit the power of algebra to unify models and classify their variations.

Keywords

Program Logic Complete Lattice Resource Model Local Element Concurrent Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. TCS 163(182), 55–98 (1996)Google Scholar
  3. 3.
    Brookes, S.D.: A semantics of concurrent separation logic. TCS 375(1-3), 227–270 (2007); Prelim. version appeared in CONCUR 2004MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic. In: LICS, pp. 366–378. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  5. 5.
    Dijkstra, E.W.: A discipline of programming. Prentice-Hall series in automatic computation. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  6. 6.
    Gischer, J.L.: The equational theory of pomsets. TCS 61, 199–224 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall series in computer science. Prentice-Hall, Englewood Cliffs (1998)zbMATHGoogle Scholar
  8. 8.
    Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its foundations. Journal of Logic and Algebraic Programming (2011); Prelim. version in CONCUR 2009Google Scholar
  9. 9.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    O’Hearn, P.W.: Resources, concurrency and local reasoning. TCS 375(1-3), 271–307 (2004); Prelim. version appeared in CONCUR 2004Google Scholar
  11. 11.
    Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. A. R. Hoare
    • 1
  • Akbar Hussain
    • 2
  • Bernhard Möller
    • 3
  • Peter W. O’Hearn
    • 2
  • Rasmus Lerchedahl Petersen
    • 2
  • Georg Struth
    • 4
  1. 1.Microsoft Research CambridgeUK
  2. 2.Queen Mary University of LondonUK
  3. 3.Universität AugsburgGermany
  4. 4.University of SheffieldUK

Personalised recommendations