Semantic Analysis of Gossip Protocols for Wireless Sensor Networks

  • Ruggero Lanotte
  • Massimo Merro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)


Gossip protocols have been proposed as a robust and efficient method for disseminating information throughout large-scale networks. In this paper, we propose a compositional analysis technique to study formal probabilistic models of gossip protocols in the context of wireless sensor networks. We introduce a simple probabilistic timed process calculus for modelling wireless sensor networks. A simulation theory is developed to compare probabilistic protocols that have similar behaviour up to a certain probability. This theory is used to prove a number of algebraic laws which revealed to be very effective to evaluate the performances of gossip networks with and without communication collisions.


Sensor Node Wireless Sensor Network Parallel Composition Label Transition System Simulation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis of probabilistic noninterference. Journal of Computer Security 12, 191–245 (2004)CrossRefGoogle Scholar
  2. 2.
    Bakhshi, R., Bonnet, F., Fokkink, W., Haverkort, B.: Formal analysis techniques for gossiping protocols. Operating Systems Review 41(5), 28–36 (2007)CrossRefGoogle Scholar
  3. 3.
    Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.: Mean-field analysis for the evaluation of gossip protocols. In: Huth, M., Nicol, D. (eds.) QEST, pp. 247–256. IEEE Computer Society, Budapest (2009)Google Scholar
  4. 4.
    Ballardin, F., Merro, M.: A calculus for the analysis of wireless network security protocols. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 206–222. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Computer Science 4(4) (2008)Google Scholar
  6. 6.
    Fehnker, A., Gao, P.: Formal verification and simulation for performance analysis for probabilistic broadcast protocols. In: Kunz, T., Ravi, S. (eds.) ADHOC-NOW 2006. LNCS, vol. 4104, pp. 128–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Information and Computation 117(2), 221–239 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic and probabilistic processes. In: Langmaack, H., de Roever, W., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 418–430. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Kermarrec, A., van Steen, M.: Gossiping in distributed systems. Operating Systems Review 41(5), 2–7 (2007)CrossRefGoogle Scholar
  10. 10.
    Kwiatkowska, M., Norman, G., Parker, D.: Analysis of a gossip protocol in prism. SIGMETRICS Performance Evaluation Review 36(3), 17–22 (2008)CrossRefGoogle Scholar
  11. 11.
    Kwiatkowska, M., Norman, G., Parker, D., Vigliotti, G.M.: Probabilistic mobile ambients. Theoretical Computuer Science 410(12-13), 1272–1303 (2009)Google Scholar
  12. 12.
    Lanotte, R., Merro, M.: Semantic analysis of gossip protocols for wireless sensor networks, Forthcoming Technical Report, Dept. Computer Science, Verona (2011)Google Scholar
  13. 13.
    Mitra, S., Lynch, N.: Proving approximate implementations for probabilistic I/O automata. Electronic Notes in Theoret. Comput. Science 174(8), 71–93 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. 15.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis, Laboratory for Computer Science, MIT (1995)Google Scholar
  16. 16.
    Segala, R., Turrini, A.: Approximated computationally bounded simulation relations for probabilistic automata. In: Sabelfeld, A. (ed.) CSF, pp. 140–156. IEEE Computer Society, Venice (2007)Google Scholar
  17. 17.
    Song, L., Godskesen, J.: Probabilistic mobility models for mobile and wireless networks. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 86–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ruggero Lanotte
    • 1
  • Massimo Merro
    • 2
  1. 1.Dipartimento di Informatica e ComunicazioneUniversità dell’InsubriaItaly
  2. 2.Dipartimento di InformaticaUniversità degli Studi di VeronaItaly

Personalised recommendations