Fixed-Delay Events in Generalized Semi-Markov Processes Revisited

  • Tomáš Brázdil
  • Jan Krčál
  • Jan Křetínský
  • Vojtěch Řehák
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6901)

Abstract

We study long run average behavior of generalized semi-Markov processes with both fixed-delay events as well as variable-delay events. We show that allowing two fixed-delay events and one variable-delay event may cause an unstable behavior of a GSMP. In particular, we show that a frequency of a given state may not be defined for almost all runs (or more generally, an invariant measure may not exist). We use this observation to disprove several results from literature. Next we study GSMP with at most one fixed-delay event combined with an arbitrary number of variable-delay events. We prove that such a GSMP always possesses an invariant measure which means that the frequencies of states are always well defined and we provide algorithms for approximation of these frequencies. Additionally, we show that the positive results remain valid even if we allow an arbitrary number of reasonably restricted fixed-delay events.

Keywords

Markov Chain Invariant Measure Model Check Transition Kernel Discrete Event System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: Proceedings of LICS 1998, pp. 454–465. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  2. 2.
    Alur, R., Bernadsky, M.: Bounded model checking for GSMP models of stochastic real-time systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 19–33. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 115–136. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Courcoubetis, C., Dill, D.: Verifying automata specifications of probabilistic real-time systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Transaction on Software Engineering 29(6), 524–541 (2003)Google Scholar
  7. 7.
    Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC model checking of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Bernadsky, M., Alur, R.: Symbolic analysis for GSMP models with one stateful clock. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 90–103. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Brázdil, T., Krčál, J., Křetínský, J., Kučera, A., Řehák, V.: Measuring performance of continuous-time stochastic processes using timed automata. In: Proceedings of 14th International Conference on Hybrid Systems: Computation and Control (HSCC 2011), pp. 33–42, ACM Press, New York (2011)Google Scholar
  10. 10.
    Brázdil, T.: Krčál, J., Křetínský, J., Řehák, V.: Fixed-delay Events in Generalized Semi-Markov Processes Revisited. ArXiv e-prints (September 2011)Google Scholar
  11. 11.
    Ciardo, G., Jones III, R., Miner, A., Siminiceanu, R.: Logic and stochastic modeling with SMART. Performance Evaluation 63(6), 578–608 (2006)CrossRefGoogle Scholar
  12. 12.
    D’Argenio, P., Katoen, J.: A theory of stochastic systems Part I: Stochastic automata. Information and Computation 203(1), 1–38 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    German, R., Lindemann, C.: Analysis of stochastic Petri nets by the method of supplementary variables. Performance Evaluation 20(1-3), 317–335 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Glynn, P.: A GSMP formalism for discrete event systems. Proceedings of the IEEE 77, 14–23 (1989)CrossRefGoogle Scholar
  15. 15.
    Haas, P.: On simulation output analysis for generalized semi-markov processes. Commun. Statist. Stochastic Models 15, 53–80 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Haas, P.: Stochastic Petri Nets: Modelling, Stability, Simulation. Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Haas, P., Shedler, G.: Regenerative generalized semi-Markov processes. Stochastic Models 3(3), 409–438 (1987)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lindemann, C., Reuys, A., Thummler, A.: The DSPNexpress 2.000 performance and dependability modeling environment. In: Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing, Digest of Papers, pp. 228–231. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  19. 19.
    Lindemann, C., Shedler, G.: Numerical analysis of deterministic and stochastic Petri nets with concurrent deterministic transitions. Performance Evaluation 27, 565–582 (1996)CrossRefMATHGoogle Scholar
  20. 20.
    López, G., Hermanns, H., Katoen, J.: Beyond memoryless distributions: Model checking semi-markov chains. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 57–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 132–145. Springer, Heidelberg (1987)Google Scholar
  22. 22.
    Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)Google Scholar
  23. 23.
    Matthes, K.: Zur Theorie der Bedienungsprozesse. In: Transactions of the Third Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, pp. 513–528 (1962)Google Scholar
  24. 24.
    Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge (2009)Google Scholar
  25. 25.
    Roberts, G., Rosenthal, J.: General state space Markov chains and MCMC algorithms. Probability Surveys 1, 20–71 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Younes, H., Simmons, R.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 223–235. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tomáš Brázdil
    • 1
  • Jan Krčál
    • 1
  • Jan Křetínský
    • 1
  • Vojtěch Řehák
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations