Disentangling Notions of Specifier Impenetrability: Late Adjunction, Islands, and Expressive Power

  • Gregory M. Kobele
  • Jens Michaelis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6878)

Abstract

In this paper we investigate the weak generative capacity of minimalist grammars with late adjunction. We show that by viewing the Specifier Island Condition as the union of three separate constraints, we obtain a more nuanced perspective on previous results on constraint interaction in minimalist grammars, as well as the beginning of a map of the interaction between late adjunction and movement constraints. Our main result is that minimalist grammars with the SpIC on movement generated specifiers only and with the Shortest Move Constraint, in conjunction with late adjunction, can define languages whose intersection with an appropriate regular language is not semilinear.

Keywords

Lexical Item Regular Language Linear Logic Island Condition Complete Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer, M.J.: Grammars with Macro-like Productions. Ph.D. thesis, Harvard (1968)Google Scholar
  2. 2.
    Frey, W., Gärtner, H.M.: On the treatment of scrambling and adjunction in minimalist grammars. In: Proceedings of the Conference on Formal Grammar (FGTrento), Trento. pp. 41–52 (2002)Google Scholar
  3. 3.
    Gärtner, H.M., Michaelis, J.: A note on the complexity of constraint interaction: Locality conditions and minimalist grammars. In: Blache, P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 114–130. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion = Language? Chomsky’s Minimalism and the View from Syntax and Semantics, pp. 161–195. Mouton de Gruyter, Berlin (2007)Google Scholar
  5. 5.
    Gärtner, H.M., Michaelis, J.: A note on countercyclicity and minimalist grammars. In: Penn, G. (ed.) Proceedings of FGVienna: The 8th Conference on Formal Grammar, pp. 95–109. CSLI Publications, Stanford (2008), published within the corresponding volume of the CSLI Online Publications’ series of FG Conference Proceedings http://cslipublications.stanford.edu/FG/2003/index.html Google Scholar
  6. 6.
    Girard, J.Y.: Linear logic (1987)Google Scholar
  7. 7.
    de Groote, P., Guillaume, B., Salvati, S.: Vector addition tree automata. In: 19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004), Turku, pp. 64–73. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  8. 8.
    de Groote, P., Morrill, G., Retoré, C. (eds.): LACL 2001. LNCS (LNAI), vol. 2099. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Harkema, H.: A characterization of minimalist languages. In: de Groote, P., et al (eds.) [8], pp. 193–211Google Scholar
  10. 10.
    Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kanazawa, M., Michaelis, J., Salvati, S., Yoshinaka, R.: Well-nestedness properly subsumes strict derivational minimalism. In: Pogodalla, S., Prost, J.P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 112–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kobele, G.M.: Formalizing mirror theory. Grammars 5, 177–221 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kobele, G.M.: Features moving madly. Research on Language and Computation 3, 391–410 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kobele, G.M., Michaelis, J.: Two type-0 variants of minimalist grammars. In: Rogers, J.(ed.) [23], pp. 81–91, published within the corresponding volume of the CSLI Online Publications’ series of FG Conference Proceedings available at http://cslipublications.stanford.edu/FG/2005/index.html
  15. 15.
    Kracht, M.: The Mathematics of Language. Mouton de Gruyter, Berlin (2003)CrossRefMATHGoogle Scholar
  16. 16.
    Lincoln, P.: Deciding provability of linear logic formulas. In: Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Proceedings of the Workshop on Advances in Linear Logic, pp. 197–210. Cambridge University Press, Cambridge (1995)Google Scholar
  17. 17.
    Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat, M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Michaelis, J.: On Formal Properties of Minimalist Grammars. Linguistics in Potsdam 13, Universitätsbibliothek, Publikationsstelle, Potsdam, Ph.D. thesis (2001)Google Scholar
  19. 19.
    Michaelis, J.: Transforming linear context-free rewriting systems into minimalist grammars. In: de Groote, J., et al (eds.) [8], pp. 228–244Google Scholar
  20. 20.
    Michaelis, J.: Observations on strict derivational minimalism. Electronic Notes in Theoretical Computer Science 53, 192–209 (2004), http://www.sciencedirect.com/science/journal/15710661 CrossRefMATHGoogle Scholar
  21. 21.
    Michaelis, J.: An additional observation on strict derivational minimalism. In: Rogers, J. (ed.) [23], pp. 101–111, published within the corresponding volume of the CSLI Online Publications’ series of FG Conference Proceedings http://cslipublications.stanford.edu/FG/2005/index.html
  22. 22.
    Mönnich, U.: Tupel vs. Makros. In: Gärtner, H.M., Beck, S., Eckardt, R., Musan, R., Stiebels, B. (eds.) Between 40 and 60 Puzzles for Krifka. ZAS, Berlin (2006), http://www.zas.gwz-berlin.de/fileadmin/material/40-60-puzzles-for-krifka Google Scholar
  23. 23.
    Rogers, J. (ed.): Proceedings of FG-MoL 2005: The 10th Conference on Formal Grammar and The 9th Meeting on Mathematics of Language. CSLI Publications, Stanford (2009)Google Scholar
  24. 24.
    Salvati, S.: Minimalist grammars in the light of logic. Research Report, INRIA Bordeaux (2011), http://hal.inria.fr/inria-00563807/en/
  25. 25.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  27. 27.
    Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Kruijff, G.J.M., Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natural Language Syntax and Semantics, pp. 299–326. CSLI Publications, Stanford (1999)Google Scholar
  28. 28.
    Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of the Association for Computational Linguistics (ACL 1987), Stanford, CA, pp. 104–111. ACL (1987)Google Scholar
  29. 29.
    Villemonte de la Clergerie, É.: Parsing MCS languages with thread automata. In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+6), Venezia, pp. 101–108 (2002)Google Scholar
  30. 30.
    Villemonte de la Clergerie, É.: Parsing mildly context-sensitive languages with thread automata. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING 2002), Taipei, pp. 1–7 (2002)Google Scholar
  31. 31.
    Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gregory M. Kobele
    • 1
  • Jens Michaelis
    • 2
  1. 1.University of ChicagoChicagoUSA
  2. 2.Bielefeld UniversityBielefeldGermany

Personalised recommendations