A Language Theoretic Approach to Syntactic Structure

  • Alexander Clark
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6878)

Abstract

We consider the idea of defining syntactic structure relative to a language, rather than to a grammar for a language. This allows us to define a notion of hierarchical structure that is independent of the particular grammar, and that depends rather on the properties of various algebraic structures canonically associated with a language. Our goal is not necessarily to recover the traditional ideas of syntactic structure invented by linguists, but rather to come up with an objective notion of syntactic structure that can be used for semantic interpretation. The role of syntactic structure is to bring together words and constituents that are apart on the surface, so they can be combined appropriately. The approach is based on identifying concatenation operations which are non-trivial and using these to constrain the allowable local trees in a structural description.

Keywords

Leaf Node Local Tree Syntactic Structure Parse Tree Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chomsky, N.: Syntactic Structures. Mouton, Netherlands (1957)Google Scholar
  2. 2.
    Miller, P.: Strong generative capacity: The semantics of linguistic formalism. CSLI Publications, Stanford (1999)MATHGoogle Scholar
  3. 3.
    Clark, A., Lappin, S.: Linguistic Nativism and the Poverty of the Stimulus. Wiley-Blackwell (2011)Google Scholar
  4. 4.
    Wells, R.S.: Immediate constituents. Language 23(2), 81–117 (1947)CrossRefGoogle Scholar
  5. 5.
    Searle, J.R.: Chomsky’s revolution in linguistics. The New York Review of Books 18(12) (June 1972)Google Scholar
  6. 6.
    Kulagina, O.S.: One method of defining grammatical concepts on the basis of set theory. Problemy Kiberneticy 1, 203–214 (1958)Google Scholar
  7. 7.
    Sestier, A.: Contribution à une théorie ensembliste des classifications linguistiques. In: Premier Congrès de l’Association Française de Calcul, Grenoble, pp. 293–305 (1960)Google Scholar
  8. 8.
    van Helden, W.: Case and gender: Concept formation between morphology and syntax (II volumes). Studies in Slavic and General Linguistics. Rodopi, Amsterdam-Atlanta (1993)Google Scholar
  9. 9.
    Meyer, P.: Grammatical categories and the methodology of linguistics. Russian Linguistics 18(3), 341–377 (1994)CrossRefGoogle Scholar
  10. 10.
    Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)MathSciNetMATHGoogle Scholar
  11. 11.
    Clark, A.: Distributional learning of some context-free languages with a minimally adequate teacher. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 24–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 59–71. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Chomsky, N.: Review of Joshua Greenberg’s Essays in Linguistics. Word 15, 202–218 (1959)CrossRefGoogle Scholar
  14. 14.
    Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-free languages with a minimally adequate teacher. In: Proceedings of the 15th Conference on Formal Grammar, Copenhagen, Denmark (2010)Google Scholar
  15. 15.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1997)MATHGoogle Scholar
  16. 16.
    Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently learn context-free languages. Journal of Machine Learning Research 11, 2707–2744 (2010)MathSciNetMATHGoogle Scholar
  17. 17.
    Clark, A.: Learning context free grammars with the syntactic concept lattice. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 38–51. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages. In: Proceedings of CoNLL, Uppsala, Sweden, pp. 28–37 (2010)Google Scholar
  19. 19.
    Gazdar, G., Klein, E., Pullum, G., Sag, I.: Generalised Phrase Structure Grammar. Basil Blackwell, Malden (1985)Google Scholar
  20. 20.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 229 (1991)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional substitutability from positive data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Yoshinaka, R.: Polynomial-time identification of multiple context-free languages from positive data and membership queries. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 230–244. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Scholz, B., Pullum, G.: Systematicity and Natural Language Syntax. Croatian Journal of Philosophy 3(21), 375 (2007)Google Scholar
  24. 24.
    Clark, A.: A learnable representation for syntax using residuated lattices. In: de Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS, vol. 5591, pp. 183–198. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Manaster-Ramer, A.: Dutch as a formal language. Linguistics and Philosophy 10(2), 221–246 (1987)CrossRefGoogle Scholar
  26. 26.
    Carnie, A.: Constituent structure. Oxford University Press, USA (2008)Google Scholar
  27. 27.
    Chomsky, N.: Language and mind, 3rd edn. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Clark
    • 1
  1. 1.Department of Computer ScienceRoyal Holloway, University of LondonEghamUnited Kingdom

Personalised recommendations