Regular Growth Automata: Properties of a Class of Finitely Induced Infinite Machines

  • Christian Wurm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6878)

Abstract

We present a class of infinite automata, in which all local computations are performed by finite state machines. These automata characterize an abstract family of languages which does not seem to coincide with any other known class, and which seems to cut across the Chomsky hierarchy. We show results regarding recognizing power and closure properties, and sketch the use of machine growth as a refined measure of complexity with respect to some well-known measures.

Keywords

Regular Language Closure Property Letter Operator Garden Path Automatic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL * over flat Presburger counter systems. Journal of Applied Non-classical Logics 20, 313–343 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor. Comput. Sci. 108(1), 45–82 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hawkins, J.A.: A Performance Theory of Order and Constituency. Cambridge Univ. Pr., Cambridge (1994)Google Scholar
  4. 4.
    Kaneps, J., Freivalds, R.: Minimal nontrivial space complexity of probabilistic one-way turing machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 355–361. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  5. 5.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Kornai, A.: Natural languages and the chomsky hierarchy. In: Proceedings of the 2nd European Conference of the ACL 1985, pp. 1–7 (1985)Google Scholar
  7. 7.
    MacNaughton, R., Papert, S.: Counter-free Automata. M.I.T. Press, Cambridge (1971)Google Scholar
  8. 8.
    Marcus, M., Hindle, D., Fleck, M.: D-Theory: Talking about talking about trees. In: Proceedings of the 21st Annual Meeting of the ACL 1983, pp. 129–136 (1983)Google Scholar
  9. 9.
    Rubin, S.: Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic 14(2), 169–209 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Shallit, J., Breitbart, Y.: Automaticity: Properties of a measure of descriptional complexity. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 619–630. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Stabler, E.P.: The finite connectivity of linguistic structure. In: Clifton, C., Frazier, L., Rayner, K. (eds.) Perspectives on Sentence Processing, pp. 303–336. Lawrence Erlbaum, Mahwah (1994)Google Scholar
  12. 12.
    Trakhtenbrodt, B.A., Barzdin, Y.M.: Finite Automata. North Holland, Amsterdam (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Wurm
    • 1
  1. 1.Fakultät für Linguistik und LiteraturwissenschaftenUniversität Bielefeld, CITEC BielefeldGermany

Personalised recommendations