A Market-Driven Product Line Scoping

Part of the Studies in Computational Intelligence book series (SCI, volume 377)


As markets fragmented into a plethora of submarkets, coping with various customers demands is becoming time consuming and expensive. Recently software product line (SPL) approach has shown many benefits as opposed to single product development approach in terms of quality, time-to-market, and cost. However, quantitative market-driven scoping method from existing or future product portfolio and relating customers to products has not been explored. Even though setting the proper scope of the product line is the first step to establishing initiatives in software product line, a market-driven scoping based on engineering principles has not been fully exploited. In this paper, we propose a market-driven quantitative scoping method. This method incorporates customers’ needs, product family structure and market strategies into scoping such that this ensures that SPL derivatives penetrate market grids.


software product line engineering scoping share of wallet life time value leveraging strategy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auer, M., Graser, B., Biffl, S.: An approach to visualizing empirical software project portfolio data using multidimensional scaling, pp. 504–512. IEEE, Los Alamitos (2003)Google Scholar
  2. 2.
    Berger, P., Nasr, N.: Customer lifetime value: marketing models and applications. Journal of Interactive Marketing 12(1) (1998)Google Scholar
  3. 3.
    Cameron, C., Trivedi, P.: Microeconometrics: methods and applications. Cambridge University Press, New York (2005)Google Scholar
  4. 4.
    Clements, P., Northrop, L.: Software Product Lines: Practices and Pattern. Addison Wesley, Reading (2001)Google Scholar
  5. 5.
    Cormack, R.M.: A review of classification. Journal of the Royal Statistical Society 134(3), 321–367 (1973)MathSciNetGoogle Scholar
  6. 6.
    Davis, A.: The art of requirements triage. IEEE Computer, 42–49Google Scholar
  7. 7.
    Davis, S.: Future Perfect, 10th anniversary edition. Addison-Wesley Pub. Co., Harlow (1996)Google Scholar
  8. 8.
    DeBaud, J.M., Schmid, K.: A systematic approach to derive the scope of software product lines. In: Proceedings of ICSE 1999, Los Angeles, USA, pp. 34–43 (1999)Google Scholar
  9. 9.
    Fraley, C., Raftery, A.: Model-based clustering, discriminant analysis and density estimation. Journal of the American Statistical Association 97(458), 611–631 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Helferich, A., Herzwurm, G., Schockert, S.: QFD-PPP: Product line portfolio planning using quality function deployment. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 162–173. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Helferich, A., Schmid, K., Herzwurm, G.: Reconciling marketed and engineered software product lines. In: 10th International Software Product Line Conference, SPLC 2006 (2006)Google Scholar
  12. 12.
    Helsen, K., Schmittlein, D.: Analyzing duration times in marketing: evidence for the effectiveness of hazard rate models. Marketing Science 11(4), 395–414 (1993)CrossRefGoogle Scholar
  13. 13.
    Jaccard, P.: Distribution de la flore alpine dans le basin des Dranes et dans quelques regions voisines. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 241–272 (1901)Google Scholar
  14. 14.
    Jain, D., Singh, S.: Customer lifetime value research in marketing: a review and future directions. Journal of Interactive Marketing 16(2), 34–46 (2002)CrossRefGoogle Scholar
  15. 15.
    Jiao, J.R., Simpson, T.W., et al.: Product family design and platform-based product development: a state-of-the-art review. Journal of Intelligent Manufacturing 18, 5–29 (2006)CrossRefGoogle Scholar
  16. 16.
    John, I., Knodel, J., Lehner, T., Muthig, D.: A practical guide to product line scoping. In: 10th International Software Product Line Conference, SPLC 2006 (2006)Google Scholar
  17. 17.
    Kang, K.C., Donohoe, P., Koh, E., Lee, J.J., Lee, K.: Using a marketing and product plan as a key driver for product line asset development. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 366–382. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An introduction to Cluster Analysis. John Wiley & Sons, New York (1990)Google Scholar
  19. 19.
    Kaul, A., Rao, V.R.: Research for product positioning and design decisions: an integrative review. International Journal of Research in Marketing 12, 293–320 (1995)CrossRefGoogle Scholar
  20. 20.
    Kleef, E., Trijp, H., Luning, P.: Internal versus external preference analysis: an exploratory study on end-user evaluation. Food Quality and Preference 17, 387–399 (2006)CrossRefGoogle Scholar
  21. 21.
    Koenker, R.: Quantile regression, pp. 222–228. Cambridge Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46(1), 33–50 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Koenker, R., Hallock, K.: Quantile regression. Journal of Economic Perspectives 15(4), 143–156 (2001)CrossRefGoogle Scholar
  24. 24.
    Krishnan, V., Ulrich, K.T.: Product development decisions: a review of the literature. Management Science 47, 1–21 (2001)CrossRefGoogle Scholar
  25. 25.
    Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kruskal, J.B.: Multidimensional scaling: a numerical method. Psychometrika 29, 1–27 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line Software Engineering. In: Proceedings of the 7th Reuse Conference, Austin, April 15-19, pp. 62–77 (2002)Google Scholar
  28. 28.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Math. Stat. and Prob., Statistics, vol. I (1967)Google Scholar
  29. 29.
    Martin, M., Ishii, K.: Design for Variety: A Methodology for Developing Product Platform Architectures. In: Proceedings of DETC 2000, Baltimore Maryland, pp. 10–13 (2000)Google Scholar
  30. 30.
    Mead, A.: Review of the development of multidimensional scaling methods. The Statistician 41(1), 27–39 (1992)CrossRefGoogle Scholar
  31. 31.
    Meyer, M.H., Lehnerd, A.P.: The power of product platforms. The Free Press, New York (1997)Google Scholar
  32. 32.
    Meyer, M.H., Tertzakian, P., et al.: Metrics for managing research and development in the context of the product family. Management Science 43 (1), 88–111 (1997)CrossRefzbMATHGoogle Scholar
  33. 33.
    Rosset, S., Neumann, E., Eick, U., Vatnik, N.: Customer lifetime value for decision support. In: Data Mining and Knowledge Discovery, pp. 321–339 (2003)Google Scholar
  34. 34.
    Schmid, K.: A comprehensive product line scoping approach and its validation. In: Proceedings of ICSE 2002, Orlando, USA, pp. 593–603 (May 2002)Google Scholar
  35. 35.
    Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function, I. Psychometrika 27, 125–140 (1962)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Shepard, R.N.: The analysis of proximities: MDS with an unknown distance function, II. Psychometrika 27, 219–246 (1962)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Simpson, T.W.: Product Platform Design and Customization: Status and Promise. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing 18(1), 3–20 (2004)CrossRefGoogle Scholar
  38. 38.
    Standish Group: Chaos: A Recipe for Success. Standish Group International (1999)Google Scholar
  39. 39.
    Takane, Y., Young, F.W., de Leeuw, J.: Non-metric individual differences MDS: an alternating least squares method with optimal scaling features. Psychometrika 42, 7–67 (1978)CrossRefGoogle Scholar
  40. 40.
    Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Van Zyl, J., Walker, A.: Product line balancing-an empirical approach to balance features across product lines. In: IEEE Engineering Mgmt. Conference Proceedings, pp. 1–6. IEEE Electronic Library (2001)Google Scholar
  42. 42.
    Verner, J.M., Evanco, W.M.: In-house software development: what project mgmt practices lead to success? IEEE Software (2005)Google Scholar
  43. 43.
    Wheelwright, S., Sasser, W.E.: The New Product Development Map. Harvard Business Review, 112–125 (1989)Google Scholar
  44. 44.
    Williams, W.T.: Principles of clustering. Annual Review of Ecology and Systematics 2, 303–326 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceKorea Advanced Institute of Science and TechnologyYuseong-guRepublic of Korea

Personalised recommendations