A Decision Support System Based on the Semantic Analysis of Melanoma Images Using Multi-elitist PSO and SVM

  • Weronika Pia̧tkowska
  • Jerzy Martyna
  • Leszek Nowak
  • Karol Przystalski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6871)


The use of machine learning tools for the purpose of medical diagnosis is gradually increasing. This is mainly because the effectiveness of classification has improved a great deal to help medical experts in diagnosing diseases. Such a disease is melanoma malignum, which is a very common type of cancer among humans. In this paper, we use modified version of classical Particle Swarm Optimization (PSO) algorithm, known as the Multi-Elitist PSO (MEPSO) method and support vector machines (SVM) to classify melanoma malignum images previously preprocessed by image segmentation and image feature extraction. The classification accuracy obtained is ca. 96%. The proposed classification method can be developed to an automatic classification process, the performance of which is similar to human perception.


Support Vector Machine Particle Swarm Optimization Semantic Category Segmented Region Support Vector Machine Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argenziano, G., Fabbrocini, G., Carli, P., DeGiorgi, V., Sammarco, P.E., Delfino, M.: Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions. Archive of Dermatology 134, 1563–1570 (1998)CrossRefGoogle Scholar
  2. 2.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)zbMATHGoogle Scholar
  3. 3.
    Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining Knowledge Discovery 2(2), 121–167 (1998)CrossRefGoogle Scholar
  4. 4.
    Burroni, M., et al.: Melanoma Computer-aided Diagnosis: Reliability and Feasibility Study. Clinical Cancer Research 10, 1881–1886 (2004)CrossRefGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The Particle Swarm - Explosion, Stability, and Convergence in Multidimensional Complex Space. IEEE Trans. on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm, NSGA-II. IEEE Trans. on Evolutionary Computation 6(2) (2002)Google Scholar
  7. 7.
    Deng, C., Manjunath, B.S.: Unsupervised Segmentation of Color-Texture Regions in Images and Video. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(8), 800–810 (2001)CrossRefGoogle Scholar
  8. 8.
    du Vivier, A.W., Williams, H.C., Brett, J.V., Higgins, E.M.: How Do Malignant Melanomas Present and Does This Correlate with the Seven-point Check-list? Clinical Experimental Dermatology 16, 344–347 (1991)CrossRefGoogle Scholar
  9. 9.
    Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support Vector Regression Machines. In: Mozer, M., Jordan, M., Petschke, J. (eds.) Advances in Neural Information Processing System, vol. 9, pp. 155–161. MIT, Cambridge (1997)Google Scholar
  10. 10.
    Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Proc. of IEEE Int. Conference on Evolutionary Computation, vol. 1, pp. 81–86 (2001)Google Scholar
  11. 11.
    Grigorescu, S., Petkov, N., Kruizinga, P.: Comparison of Texture Features Based on Gabor Filters. IEEE Trans. Image Process 11(10) (2002)Google Scholar
  12. 12.
    Grzymala-Busse, P., Grzymala-Busse, J.W., Hippe, Z.S.: Melanoma Prediction Using Data Mining System LERS. In: COMPSAC 2001, pp. 615–620 (2001)Google Scholar
  13. 13.
    Ma, X., Wang, D.: Semantic Modeling Based Image Retrieval System Using Neural Networks. IEEE Int. Conf. on Image Processing, 1165–1168 (2005)Google Scholar
  14. 14.
    McGovern, T.W., Litaker, M.S.: Clinical Predictors of Malignant Pigmented Lesions: A Comparison of the Glasgow Seven-point Checklist and the American Cancer Society’s ABCDs of Pigmented Lesions. J. Dermatologic Surgey & Oncology 18, 22–26 (1992)CrossRefGoogle Scholar
  15. 15.
    Müller, K.R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J., Vapnik, V.: Prediction Time Series with Support Vector Machines. In: Gerstner, W., Germond, A., Hasler, M., Micord, J.D. (eds.) Artificial Neural Networks, Berlin, pp. 999–1004 (1997)Google Scholar
  16. 16.
    Muezzinoglu, M.K., Żurada, J.M.: RBF-Based Neurodynamic Nearest Neighbor Classification in Real Pattern Space. Pattern Recognition 39(5), 747–760 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pehamberger, H., Binder, M., Steiner, A., Wolff, K.: In Vivo Epiluminescence Microscopy: Improvement of Early Diagnosis of Melanoma. Journal of Investigative Dermatology 100, 356S–362S (1993)CrossRefGoogle Scholar
  18. 18.
    Pizzichetta, M.A., Talamini, R., Piccolo, D., et al.: The ABCD Rule of Dermatoscopy Does Not Apply to Small Melanocytic Skin Lesions. Archive of Dermatology 37, 1376–1378 (2001)Google Scholar
  19. 19.
    Ratnaweera, A., Halgamuge, K.S.: Self Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Trans. on Evolutionary Computation 8(3), 240–254 (2004)CrossRefGoogle Scholar
  20. 20.
    Rubegni, P., Cevenini, G., Burroni, M., et al.: Automated Diagnosis of Pigmented Skin Lesions. Int. J. Cancer 101, 576–580 (2002)CrossRefGoogle Scholar
  21. 21.
    Schindewolf, T., Stolz, W., Albert, R., Abmayr, W., Harms, H.: Classification of Melanocytic Lesions Lesions with Color and Texture Analysis Using Digital Image Processing. American J. of Epidemiology 15, 1–15 (1993)Google Scholar
  22. 22.
    Stolz, W., Riemann, A., Cognetta, A., et al.: ABCD Rule of Dermatoscopy: A New Practical Method for Early Recognition of Malignant Melanoma. European J. of Dermatology 7, 521–528 (1994)Google Scholar
  23. 23.
    Tsai, C.F., McGarry, K., Tait, J.: Image Classification Using Hybrid Neural Network. In: Annual ACM Conference on Research and Development in Information Retrieval, pp. 431–432 (2003)Google Scholar
  24. 24.
    Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)zbMATHGoogle Scholar
  25. 25.
    Wang, J.Z., Li, J., Wiederhold, G.: Simplicity Semantic-Sensitive Integrated Matching for Picture Libraries. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 947–963 (2001)CrossRefGoogle Scholar
  26. 26.
    Wang, D., Lim, J.S., Ham, M.M., Lee, B.W.: Learning Similarity for Semantic Images Classification. Neurocomputing 67, 363–368 (2005)CrossRefGoogle Scholar
  27. 27.
    Whited, J.D., Grichnik, J.M.: Does This Patient Have a Mode or a Melanoma. J. of the American Medical Association 279, 696–701 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Weronika Pia̧tkowska
    • 1
  • Jerzy Martyna
    • 2
  • Leszek Nowak
    • 1
  • Karol Przystalski
    • 1
  1. 1.Institute of Applied Computer ScienceJagiellonian UniversityCracowPoland
  2. 2.Institute of Computer ScienceJagiellonian UniversityCracowPoland

Personalised recommendations