Collective Classification Using Heterogeneous Classifiers

  • Zehra Cataltepe
  • Abdullah Sonmez
  • Kadriye Baglioglu
  • Ayse Erzan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6871)


Collective classification algorithms have been used to improve classification performance when network training data with content, link and label information and test data with content and link information are available. Collective classification algorithms use a base classifier which is trained on training content and link data. The base classifier inputs usually consist of the content vector concatenated with an aggregation vector of neighborhood class information. In this paper, instead of using a single base classifier, we propose using different types of base classifiers for content and link. We then combine the content and link classifier outputs using different classifier combination methods. Our experiments show that using heterogeneous classifiers for link and content classification and combining their outputs gives accuracies as good as collective classification. Our method can also be extended to collective classification scenarios with multiple types of content and link.


Synthetic Dataset Test Node Content Graph Cora Dataset Link Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, A.A., Clearwater, S., Hill, S., Perlich, C., Provost, F.: Discovering knowledge from relational data extracted from business news. In: Proceedings of the Workshop on Multi-Relational Data Mining at KDD 2002, pp. 7–22 (2002)Google Scholar
  2. 2.
    Angin, P., Neville, J.: A shrinkage approach for modeling non-stationary relational autocorrelation. In: SNA/KDD (2008)Google Scholar
  3. 3.
    Awan, A., Bari, H., Yan, F., Moksong, S., Yang, S., Chowdhury, S., Cui, Q., Yu, Z., Purisima, E., Wang, E.: Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling network. IET Syst. Biol. 1(5), 292–297 (2007)CrossRefGoogle Scholar
  4. 4.
    Balcan, D., Erzan, A.: Random model for rna interference yields scale free network. Eur. Phys. J. B (38), 253–260 (2004)Google Scholar
  5. 5.
    Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Graph-based model-selection framework for large ensembles. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 557–564. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: SIGMOD (1998)Google Scholar
  7. 7.
    Chapelle, O., Zien, A., Scholkopf, B.: Semi-supervised learning. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  8. 8.
    Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A., Joshi, A.: Social ties and their relevance to churn in mobile telecom networks. In: EDBT 2008 (2008)Google Scholar
  9. 9.
    Fast, A., Jensen, D.: Why stacked models perform effective collective classification. In: Eighth IEEE International Conference on Data Mining, pp. 785–790 (2008)Google Scholar
  10. 10.
    Goodman, L.: Snowball sampling. Annals of Mathematical Statistics 32, 148–170 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: University of Massachusetts, Technical Report 04-27 (2004)Google Scholar
  12. 12.
    Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of ECML (1998)Google Scholar
  13. 13.
    Kou, Z., Cohen, W.W.: Notes on stacked graphical learning for efficient inference in markov random fields. In: CMU Technical Report, CMU-ML-07-101 (2007)Google Scholar
  14. 14.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a univariate case study (May 2007)Google Scholar
  16. 16.
    Maeno, Y., Ohsawa, Y.: Node discovery problem for a social network (2007)Google Scholar
  17. 17.
    McDowell, L., Gupta, K., Aha, D.: Cautious collective classification. Journal of Machine Learning Research 10, 2777–2836 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    McDowell, L., Gupta, K., Aha, D.: Meta-Prediction for Collective Classification (2010)Google Scholar
  19. 19.
    McDowell, L., Gupta, K.M., Aha, D.W.: Cautious inference in collective classification. In: AAAI, pp. 596–601. AAAI Press, Menlo Park (2007)Google Scholar
  20. 20.
    Neville, J., Gallagher, B., Eliassi-Rad, T.: Evaluating statistical tests for within-network classifiers of relational data. In: ICDM (2009)Google Scholar
  21. 21.
    Neville, J., Jensen, D.: Iterative classification in relational data. In: Workshop on Statistical Relational Learning. AAAI, Menlo Park (2000)Google Scholar
  22. 22.
    Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data (2003)Google Scholar
  23. 23.
    Preisach, C., Schmidt-Thieme, L.: Ensembles of relational classifiers. Knowl. Inf. Syst 14(3), 249–272 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE 77(2), 275–286 (1989)CrossRefGoogle Scholar
  25. 25.
    Sen, P., Getoor, L.: Empirical comparison of approximate inference algorithms for networked data. In: ICML Workshop on Open Problems in Statistical Relational Learning, (SRL 2006) (2006)Google Scholar
  26. 26.
    Sen, P., Getoor, L.: Link-based classification. In: UM Computer Science Department, Technical Report, CS-TR-4858. University of Maryland (2007)Google Scholar
  27. 27.
    Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29(3) (2008)Google Scholar
  28. 28.
    Senliol, B., Aral, A., Cataltepe, Z.: Feature selection for collective classification. In: International Symposium on Computer and Information Sciences (ISCIS 2009). IEEE, Los Alamitos (2009)Google Scholar
  29. 29.
    Senliol, B., Cataltepe, Z., Sonmez, A.: Feature and node selection for collective classification. In: International Symposium on Computer and Information Sciences, (ISCIS 2010) (2010)Google Scholar
  30. 30.
    U. o. M. Statistical relational learning groupGoogle Scholar
  31. 31.
    Tresp, V., Bundschus, M., Rettinger, A., Huang, Y.: Towards machine learning on the semantic web. In: Uncertainty Reasoning for the Semantic Web I. Lecture Notes in AI. Springer, Heidelberg (2008)Google Scholar
  32. 32.
    Vapnik, V.N.: Estimation of dependences based on empirical data. Birkhuser, Basel (2006)zbMATHGoogle Scholar
  33. 33.
    Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 981–990. ACM, New York (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zehra Cataltepe
    • 1
  • Abdullah Sonmez
    • 1
  • Kadriye Baglioglu
    • 1
  • Ayse Erzan
    • 2
  1. 1.Computer Engineering Dept.Istanbul Technical UniversityMaslakTurkey
  2. 2.Physics Dept.Istanbul Technical UniversityMaslakTurkey

Personalised recommendations