Advances in Information Processing Paradigms

  • Jeffrey Tweedale
  • Lakhmi Jain
Part of the Studies in Computational Intelligence book series (SCI, volume 376)


Information processing plays an important role in virtually all systems. We examine a range of systems, that cover healthcare, engineering, aviation and education. This chapter presents some of the most recent advances in information processing technologies. A brief outline is presented with background about knowledge representation and AI in decision making. A brief outline of each chapters is also included.


Decision Support System Finite State Machine Linear Genetic Programming First Order Predicate Logic Information Processing Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackley, H., Hinton, E., Sejnowski, J.: A learning algorithm for boltzmann machines. Cognitive Science, 147–169 (1985)Google Scholar
  2. 2.
    Balbo, F., Pinson, S.: A transportation decision support system in agent-based environment. Intelligent Decision Technologies 1(3), 97–115 (2007)Google Scholar
  3. 3.
    Beyer, H.: The Theory of Evolutionary Strategies. Springer, Berlin (2001)Google Scholar
  4. 4.
    Bichindaritz, I., Marling, C.: Case-based reasoning in the health sciences: What’s next? Artificial Intelligence in Medicine 36, 127–135 (2006)CrossRefGoogle Scholar
  5. 5.
    Bigus, J.P., Bigus, J.: Constructing Intelligent Agents Using Java: Professional Developer’s Guide, 2nd edn. Wiley, New York (2001)Google Scholar
  6. 6.
    Bourg, D.M., Seeman, G.: AI for Game Developers. O’Reilly Media, Sebastopol (2004)Google Scholar
  7. 7.
    Bratman, M.E.: What is intention? In: Cohen, P.R., Morgan, I.L., Pollock, M.E. (eds.) Communications, pp. 15–32. MIT Press, Cambridge (1990)Google Scholar
  8. 8.
    Callan, R.: Artificial Intelligence. Palgrave MacMillan, Hampshire (2003)Google Scholar
  9. 9.
    Campbell, M., Jr., A.J.H., Hsu, F.: Deep blue. Artificial Intelligence 134(1-2), 57–83 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Carpenter, G., Grossberg, S.: Art 2: Self-organization of stable category recognition codes for analog input patterns. Applied Optics 26(23), 4919–4930 (1987)CrossRefGoogle Scholar
  11. 11.
    Cerrito, P.B.: Choice of antibiotic in open heart surgery. Intelligent Decision Technologies 1(1-2), 63–69 (2007)Google Scholar
  12. 12.
    Chan, C.: An expert decision support system for monitoring and diagnosis of petroleum production and separation processes. Expert Systems with Applications 29, 127–135 (2005)Google Scholar
  13. 13.
    Chauhan, B.K., Hanmandlu, M.: Load forecasting using wavelet fuzzy neural network. International Journal of Knowledge-Based and Intelligent Engineering Systems 13(4), 1327–2314 (2010)Google Scholar
  14. 14.
    Coram, R.: Boyd: The Fighter Pilot who changed the Art of War. Little Brown and Company, Boston (2002)Google Scholar
  15. 15.
    Crispin, A., Rankov, V.: Evolutionary algorithm for pcb inspection. International Journal of Knowledge-Based and Intelligent Engineering Systems 13(4), 1327–2314 (2009)Google Scholar
  16. 16.
    De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: Case-based reasoning as a decision support system for cancer diagnosis: A case study. Int. J. Hybrid Intell. Syst. 6(2), 97–110 (2009)Google Scholar
  17. 17.
    Dhar, V., Stein, R.: Intelligent decision support methods: the science of knowledge work. Prentice-Hall, Inc., Upper Saddle River (1997)Google Scholar
  18. 18.
    d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dMARS. In: Agent Theories, Architectures, and Languages, pp. 155–176 (1997)Google Scholar
  19. 19.
    Dodson, C.S., Johnson, M.K., Schooler, J.W.: The verbal overshadowing effect: why descriptions impair face recognition. Mem. Cognit. 25(2), 129–139 (1997)CrossRefGoogle Scholar
  20. 20.
    Emden, M.H.V., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)zbMATHCrossRefGoogle Scholar
  21. 21.
    Fazlollahi, B., Vahidov, R.: Multi-agent decision support system incorporating fuzzy logic. In: 19th International Conference of the North American Fuzzy Information Processing Society, NAFIPS, pp. 246–250 (2000)Google Scholar
  22. 22.
    Feigenbaum, E., McCorduck, P., Nii, H.P.: The Rise of the Expert Company. Times Books, New York (1988)Google Scholar
  23. 23.
    Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for autonomous agents. In: Proceedings of the Third International Workshop on Agent Theories, Architectures and Languages, Budapest, Hungary, pp. 193–206 (1996)Google Scholar
  24. 24.
    Freeman, E., Freeman, E.: Head First: Design Patterns. O’Rielly, Sebastopol (2004)Google Scholar
  25. 25.
    Frize, M., Yang, L., Walker, R., O’Connor, A.: Conceptual framework of knowledge management for ethical decision-making support in neonatal intensive care. IEEE Transactions on Information Technology in Biomedicine 9, 205–215 (2005)CrossRefGoogle Scholar
  26. 26.
    Grevier, D.: AI – The Tumultuous History of the Search for Artificial Intelligence. Basic Books, New York (1993)Google Scholar
  27. 27.
    Grossberg, S.: Competitive learning: From interactive activation to adaptive resonance. Cognitive Science 11, 23–63 (1987)CrossRefGoogle Scholar
  28. 28.
    Hammond, G.T.: The Mind of War: John Boyd and American Security. Smithsonian Institution Press, Washington (2004)Google Scholar
  29. 29.
    Haugeland, J.: Artificial Intelligence: The Very Idea. MIT Press, Cambridge (1985)Google Scholar
  30. 30.
    Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1975)Google Scholar
  31. 31.
    Hopfield, J.: Neurons with graded responses have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences (USA) 81, 3088–3092 (1984)CrossRefGoogle Scholar
  32. 32.
    Iliadis, L.: A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environmental Modelling and Software 20, 613–621 (2005)CrossRefGoogle Scholar
  33. 33.
    Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison-Wesley, Reading (1999)Google Scholar
  34. 34.
    Jain, A., Jain, A., Jain, S., Jain, L. (eds.): Artificial Intelligence Techniques in Breast Cancer Diagnosis and Prognosis. Machine Perception and Artificial Intelligence, vol. 39. World Scientific Publishing, Hackensack (2000)zbMATHGoogle Scholar
  35. 35.
    Jennings, N., Wooldridge, M.: Software agents. IEE Review, The Institution of Engineering and Technology (IET) 42(1), 17–20 (1996)Google Scholar
  36. 36.
    Jiang, E.: Detecting spam email by radial basis function networks. International Journal of Knowledge-Based and Intelligent Engineering Systems 11(6), 409–418 (2007)Google Scholar
  37. 37.
    Jones, M.T.: AI Application Programming. Charles River Media, Inc., Hingham (2003)Google Scholar
  38. 38.
    Kanoh, H.: Dynamic route planning for car navigation systems using virus genetic algorithms. International Journal of Knowledge-Based and Intelligent Engineering Systems 11(1), 65–78 (2007)Google Scholar
  39. 39.
    Kenneth, I.C., Bowen, A., Buettner, A., Turk, A.K.: The design and implementation of a high-speed incremental portable prolog compiler. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 650–656. Springer, Heidelberg (1986)Google Scholar
  40. 40.
    Khazab, M., Tweedale, J., Jain, L.: Web-based multi-agent system architecture in a dynamic environment. International Journal of Knowledge-Based and Intelligent Engineering Systems 14(4), 217–227 (2010)Google Scholar
  41. 41.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Klien, G.: Sources of Power. MIT Press, Cambridge (1998)Google Scholar
  43. 43.
    Klien, G.A.: Recognition-primed decisions. In: Rouse, W.B. (ed.) Advances in Man Machine System Research, vol. 5, pp. 47–92. JAI Press, Greenwich (1989)Google Scholar
  44. 44.
    Klien, G.A.: A recognition-primed decision (RPD) model of rapid decision making. In: Klien, G.A., Orasanu, J., Calderwood, R., Zsambok, C.E. (eds.) Decision Making in Action: Models and Methods, pp. 138–147. Aplex Publishing Coroporation (1993)Google Scholar
  45. 45.
    Klien, G.A., Calderwood, R., McGregor, D.: Critical decision method of eliciting knowledge. IEEE Transactions on Systems, Man and Cybernetics 19, 462–472 (1989)CrossRefGoogle Scholar
  46. 46.
    Knuth, D.: The art of computer programming. In: Grace Murray Hopper Award. Association for Computing Machinery, ACM Press, New York (1971)Google Scholar
  47. 47.
    Kotsiantis, S., Tzelepis, D., Koumanakos, E., Tampakas, V.: Selective costing voting for bankruptcy prediction. International Journal of Knowledge-Based and Intelligent Engineering Systems 11(2), 409–418 (2007)Google Scholar
  48. 48.
    Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  49. 49.
    Kubota, N., Kamijima, S.: Intelligent control for vision-based soccer robots. International Journal of Knowledge-Based and Intelligent Engineering Systems 10(1), 83–91 (2007)Google Scholar
  50. 50.
    Lambert, D., Scholz, J.: Ubiquitous command and control. Intelligent Decision Technologies 1(3), 157–173 (2007)Google Scholar
  51. 51.
    Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117 (1988)CrossRefGoogle Scholar
  52. 52.
    Liu, T.-I., Khan, W.H., Oh, C.T.: A knowledge-based system of high speed machining for the manufacturing of products. International Journal of Knowledge-Based and Intelligent Engineering Systems 14(4), 185–199 (2010)Google Scholar
  53. 53.
    Mackworth, A.: The coevolution of AI and AAAI. AI Magazine 26, 51–52 (2005)Google Scholar
  54. 54.
    McCarthy, J.: Programs with common sense. In: Symposium on Mechanization of Thought Processes, National Physical Laboratory, Teddington (1958)Google Scholar
  55. 55.
    McCorduck, P.: Machines who think, pp. 1–375. Freeman, San Francisco (1979)Google Scholar
  56. 56.
    Minsky, M.: Society of Mind. Simon and Schuster, Pymble (1985)Google Scholar
  57. 57.
    Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, Cambridge (1969)zbMATHGoogle Scholar
  58. 58.
    Nadathur, G., Miller, D.: Higher-order horn clauses. J. ACM 37(4), 777–814 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Negoita, M.G., Arslan, T.: Adaptive hardware/evolvable hardware – the state of the art and the prospectus for future development. International Journal of Knowledge-Based and Intelligent Engineering Systems 12(3), 183–185 (2009)Google Scholar
  60. 60.
    Nilsson, N.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers, San Francisco (1998)zbMATHGoogle Scholar
  61. 61.
    Nolfi, S., Elman, J.L., Parisi, D.: Learning and evolution in neural networks. Technical report, Technical Report 9019, Center for Research in Language. University of California, San Diego (1990)Google Scholar
  62. 62.
    Phillips-Wren, G., Jain, L.: Preface. In: Phillips-Wren, G., Jain, L. (eds.) Intelligent Decision Support Systems in Agent-Mediated Environments. Frontiers in Articial Intelligence and Applications, vol. 115, pp. vii – ix. IOS Press, Amsterdam (2005)Google Scholar
  63. 63.
    Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Approach. Oxford University Press, New York (1998)zbMATHGoogle Scholar
  64. 64.
    Rao, A., Georgeff, M.: BDI Agents: From theory to practice. In: Proceedings for the 1st International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319. AAAI Press, California (1995)Google Scholar
  65. 65.
    Rasmussen, J.: Outlines of a hybrid model of the process plant operator. In: Sheridan, T.B., Johannsen, G. (eds.) Monitoring Behaviour and Supervisory Control. Plenum Press, New York (1976)Google Scholar
  66. 66.
    Rasmussen, J.: Skills, signs, and symbols, and other distinctions in human performance models. System Design for Human Interaction 13(3), 291–300, IEEE Transactions on Systems, Man, and Cybernetics, Piscataway, NJ, USA (1983)Google Scholar
  67. 67.
    Rasmussen, J.: Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering. Elsevier Science Inc., Amsterdam (1986)Google Scholar
  68. 68.
    Rasmussen, J.: Diagnostic reasoning in action. IEEE Transactions on Systems, Man, and Cybernetics 23(4), 981–992 (1993)CrossRefGoogle Scholar
  69. 69.
    Rasmussen, J., Pejtersen, A.M., Goodstein, L.P.: Cognitive Systems Engineering. John Wiley & Sons Inc., Chichester (1994)Google Scholar
  70. 70.
    Rasmussen, J., Pejtersen, A.M., Schmidt, K.: Taxonomy for cognitive work analysis. Technical report, Risø National Laboratory (September 1990)Google Scholar
  71. 71.
    Ren, X., Thompson, H.A., Fleming, P.J.: An agent-based system for distributed fault diagnosis. International Journal of Knowledge-Based and Intelligent Engineering Systems 10(5), 319–335 (2006)Google Scholar
  72. 72.
    Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill College, New York (1991)Google Scholar
  73. 73.
    Ross, T.J.: Fuzzy Logic with Engineering Application, 3rd edn. Wiley, Chichester (2010)CrossRefGoogle Scholar
  74. 74.
    Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge (1986)Google Scholar
  75. 75.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ, USA (2003)Google Scholar
  76. 76.
    Schütz, H.: Generating minimal herbrand models step by step. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 263–277. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  77. 77.
    Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Evolving neural network agents in the nero video game. In: Proceedings of the IEEE 2005 Symposium on Computational Intelligence and Games (CIG 2005). IEEE, Piscataway (2005)Google Scholar
  78. 78.
    Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the nero video game. IEEE Transactions on Evolutionary Computation 9, 653–668 (2005)CrossRefGoogle Scholar
  79. 79.
    Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Technical Report AI2001-290, Department of Computer Sciences. The University of Texas at Austin (2002)Google Scholar
  80. 80.
    Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine Learning 3, 9–44 (1988)Google Scholar
  81. 81.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  82. 82.
    Taghezout, N., Zaraté, P.: Supporting a multi-criterion decision making and multi-agent negotiation in manufacturing systems. Intelligent Decision Technologies 3(3), 139–155 (2009)Google Scholar
  83. 83.
    Thagard, P.R.: Computational Philiosphy of Science. MIT Press, Cambridge (1993)Google Scholar
  84. 84.
    Turing, A.: Intelligent machinery. In: Meltzer, D. (ed.) Machine Intelligence, vol 5, pp. 3 – 23. Edinburgh University Press, Orginally, a National Physics Laboratory Report (1948)Google Scholar
  85. 85.
    Turing, A.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950) (unpublished until 1968)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Urlings, P.J.M., Spijkervet, A.L.: Expert systems for decision support in military aircraft. In: Murthy, T.K.S., Münch, R.E. (eds.) Computational Mechanics Publications, pp. 153–173. Springer, Heidelberg (1987)Google Scholar
  87. 87.
    Valluri, A., Croson, D.: Agent learning in supplier selection models. Decision Support Systems 39, 219–240 (2005)Google Scholar
  88. 88.
    Vincente, K.J.: CongnitiveWork Analysis: Towards Safe, Productive and Healthy Computer-Based Work. Lawrence Erlbaum Associatesn, Mahwah (1999)Google Scholar
  89. 89.
    Watkins, C.J., Dayan, P.: Technical note: Q-learning. Machine Learning 8(3), 279–292 (1992)zbMATHGoogle Scholar
  90. 90.
    Wirth, N.: Hardware architectures for programming languages and programming languages for hardware architectures. SIGARCH Comput. Archit. News 15(5), 2–8 (1987)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Wooldridge, M., Muller, J., Tambe, M.: Agent theories, architectures, and languages: A bibliography. In: Intelligent Agents II Agent Theories, Architectures, and Languages, pp. 408–431. Springer, Heidelberg (1996)Google Scholar
  92. 92.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jeffrey Tweedale
    • 1
  • Lakhmi Jain
    • 2
  1. 1.Defence Science and Technology OrganisationEdinburghAustralia
  2. 2.School of Electrical and Information EngineeringUniversity of South AustraliaAustralia

Personalised recommendations