Ground Tactical Mission Support by Multi-agent Control of UAV Operations

  • Jiří Vokřínek
  • Peter Novák
  • Antonín Komenda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6867)


Autonomous control of group of unmanned aerial vehicles based on task allocation mechanisms shows great potential for ground tactical mission support. We introduce experimental simulation system combining flexible mission control of ground assets in urban environment and autonomous aerial support utilizing multi-agent problem solving techniques. Two case-studies are presented for evaluation – cooperative area surveillance and dynamic target tracking with undervalued number of assets. We show the strength and benefits of multi-agent task allocation and delegation mechanisms in such dynamic scenarios mainly in case of limited number of assets.


Unmanned Aerial Vehicle Task Allocation Resource Agent Ground Unit Safe House 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubins, L.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79(3), 497–516 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Köster, M., Novák, P., Mainzer, D., Fuhrmann, B.: Two case studies for jazzyk BSM. In: Dignum, F., Bradshaw, J., Silverman, B., van Doesburg, W. (eds.) Agents for Games and Simulations. LNCS (LNAI), vol. 5920, pp. 31–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Novák, P.: Jazzyk: A programming language for hybrid agents with heterogeneous knowledge representations. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS, vol. 5442, pp. 72–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Novák, P.: Behavioural State Machines: Agent Programming and Engineering. PhD thesis, Faculty of Mathematics/Computer Science and Mechanical Engineering, Clausthal University of Technology, Germany (September 2009)Google Scholar
  5. 5.
    Novák, P., Dix, J.: Modular BDI architecture. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) AAMAS, pp. 1009–1015. ACM, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Rosenkrantz, D., Stearns, R., Lewis, P. et al.: An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing 6, 563 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Semsch, E., Jakob, M., Pavlíček, D., Pěchouček, M., Šišlák, D.: Autonomous uav surveillance in complex urban environments. In: Maxim Likhachev, C.M.D.E.S., Marthi, B. (eds.) Proceedings of ICAPS 2009 Workshop on Bridging the Gap Between Task and Motion Planning, Greece, pp. 63–70 (September 2009)Google Scholar
  8. 8.
    Vokřínek, J., Komenda, A., Pěchouček, M.: Abstract architecture for task-oriented multi-agent problem solving. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 41(1), 31–40 (2011)CrossRefGoogle Scholar
  9. 9.
    Vokřínek, J., Komenda, A., Pěchouček, M.: Agents towards vehicle routing problems. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, Richland, SC, vol. 1, pp. 773–780 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jiří Vokřínek
    • 1
  • Peter Novák
    • 1
  • Antonín Komenda
    • 1
  1. 1.Agent Technology Center Dept. of Cybernetics, Faculty of Electrical EngineeringCzech Technical UniversityPragueCzech Republic

Personalised recommendations