On Quantitative Security Policies
Abstract
We introduce a formal framework to specify and enforce quantitative security policies. The framework consists of: (i) a stochastic process calculus to express the measurable space of computations in terms of Continuous Time Markov Chains; (ii) a stochastic modal logic (a variant of CSL) to represent the bound constraints on execution speed; (iii) two enforcement mechanisms of our quantitative security policies: potential and actual. The potential enforcement computes the probability of policy violations, thus providing a sort of static evaluation of when the policy is obeyed. This supports the user to accept/discard a component when the probability of the security violation is below/above a suitable chosen threshold. The actual enforcement computes at run-time the deviation of the execution speed from the acceptable rate. This specifies the execution monitor and drives it to abort unsafe executions.
Keywords
Model Check Security Policy Process Algebra Markov Kernel Structural Operational SemanticPreview
Unable to display preview. Download preview PDF.
References
- 1.Aceto, L., Hennessy, M.: Termination, deadlock and divergence. In: Mathematical Foundations of Programming Semantics, pp. 301–318. Springer, Heidelberg (1989)Google Scholar
- 2.Ash, R., Doléans-Dade, C.: Probability and measure theory. Academic Press, London (2000)MATHGoogle Scholar
- 3.Athreya, K., Lahiri, S.: Measure theory and probability theory. Springer-Verlag New York Inc. (2006)Google Scholar
- 4.Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Transactions on Computational Logic (TOCL) 1(1), 170 (2000)CrossRefGoogle Scholar
- 5.Baeten, J.: Process algebra with explicit termination. Tech. rep. (2000)Google Scholar
- 6.Baeten, J., Corradini, F.: Regular expressions in process algebra. In: Proceedings of 20th Annual IEEE Symposium on Logic in Computer Science, LICS 2005, pp. 12–19 (2005)Google Scholar
- 7.Baeten, J., Weijland, W.: Process algebra. Cambridge University Press, Cambridge (1990)CrossRefMATHGoogle Scholar
- 8.Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time Markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)CrossRefMATHGoogle Scholar
- 9.Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service orchestration. In: CSFW, pp. 57–69. IEEE Computer Society, Los Alamitos (2006)Google Scholar
- 10.Bartoletti, M., Degano, P., Ferrari, G.: Planning and verifying service composition. Journal of Computer Security 17(5), 799–837 (2009)CrossRefGoogle Scholar
- 11.Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for secure web services. IEEE Trans. Software Eng. 34(1), 33–49 (2008)CrossRefGoogle Scholar
- 12.Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Local policies for resource usage analysis. ACM Transactions on Programming Languages and Systems (TOPLAS) 31(6), 23 (2009)CrossRefMATHGoogle Scholar
- 13.Bergstra, J., Ponse, A., Smolka, S.: Handbook of process algebra. Elsevier Science Ltd., Amsterdam (2001)MATHGoogle Scholar
- 14.Bernardo, M., Gorrieri, R.: Extended markovian process algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)CrossRefGoogle Scholar
- 15.Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes (1997)Google Scholar
- 16.Cardelli, L., Mardare, R.: The measurable space of stochastic processes. In: QEST, pp. 171–180. IEEE Computer Society, Los Alamitos (2010)Google Scholar
- 17.Cardelli, L., Mardare, R.: Stochastic pi-calculus revisited (2010) (unpublished), http://lucacardelli.name
- 18.Clark, G., Gilmore, S., Hillston, J.: Specifying performance measures for PEPA. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 211–227. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 19.De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-Based Transition Systems for Stochastic Process Calculi. Automata, Languages and Programming (2009)Google Scholar
- 20.Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes. Journal of Logic and Algebraic Programming 56(1-2) (2003)Google Scholar
- 21.Fokkink, W.: Axiomatizations for the perpetual loop in process algebra. In: Automata, Languages and Programming, pp. 571–581Google Scholar
- 22.Fokkink, W., Zantema, H.: Basic process algebra with iteration: Completeness of its equational axioms. The Computer Journal 37(4), 259 (1994)CrossRefGoogle Scholar
- 23.Hillston, J.: A compositional approach to performance modelling. Cambridge Univ. Pr., Cambridge (1996)CrossRefMATHGoogle Scholar
- 24.Kemeny, J., Snell, J., Knapp, A.: Denumerable markov chains. Springer, Heidelberg (1976)CrossRefMATHGoogle Scholar
- 25.Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Computer Performance Evaluation: Modelling Techniques and Tools (2002)Google Scholar
- 26.Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 27.Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)CrossRefMATHGoogle Scholar
- 28.Norris, J.: Markov chains. Cambridge Univ. Pr., Cambridge (1998)MATHGoogle Scholar
- 29.Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)CrossRefMATHGoogle Scholar
- 30.Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578 (1995)CrossRefGoogle Scholar
- 31.Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Transactions on Programming Languages and Systems (TOPLAS) 31(4), 1–41 (2009)CrossRefMATHGoogle Scholar