Visualizing Invariant Manifolds in Area-Preserving Maps

  • Xavier Tricoche
  • Christoph Garth
  • Allen Sanderson
  • Ken Joy
Part of the Mathematics and Visualization book series (MATHVISUAL)


Area-preserving maps arise in the study of conservative dynamical systems describing a wide variety of physical phenomena, from the rotation of planets to the dynamics of a fluid. The visual inspection of these maps reveals a remarkable topological picture in which invariant manifolds form the fractal geometric scaffold of both quasi-periodic and chaotic regions. We discuss in this paper the visualization of such maps built upon these invariant manifolds. This approach is in stark contrast with the discrete Poincare plots that are typically used for the visual inspection of maps. We propose to that end several modified definitions of the finite-time Lyapunov exponents that we apply to reveal the underlying structure of the dynamics. We examine the impact of various parameters and the numerical aspects that pertain to the implementation of this method. We apply our technique to a standard analytical example and to a numerical simulation of magnetic confinement in a fusion reactor. In both cases our simple method is able to reveal salient structures across spatial scales and to yield expressive images across application domains.


Hamiltonian System Lyapunov Exponent Phase Portrait Vortex Ring Invariant Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, V.I.: Proof of A. N. Kolmogorov’s thereom on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18(5), 9 (1963)Google Scholar
  2. 2.
    Bagherjeiran, A., Kamath, C.: Graph-based methods for orbit classification. In: Proc. of 6th SIAM International Conference on Data Mining, April 2006Google Scholar
  3. 3.
    England, J., Krauskopf, B., Osinga, H.: Computing one-dimensional global manifolds of poincaré maps by continuation. SIAM J. Appl. Dyn. Syst. 4(4), 1008–1041 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Visual. Comput. Graph. 13(6), 1464–1471 (2007)CrossRefGoogle Scholar
  5. 5.
    Garth, C., Wiebel, A., Tricoche, X., Hagen, H., Joy, K.: Lagrangian visualization of flow embedded structures. Comput. Graph. Forum 27(3), 1007–1014 (2008)CrossRefGoogle Scholar
  6. 6.
    Grasso, D., Borgogno, D., Pegoraro, F., Schep,T.: Barriers to field line transport in 3d magnetic configurations. J. Phys. Conference Series 260(1), 012012 (2010). Google Scholar
  7. 7.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)zbMATHGoogle Scholar
  8. 8.
    Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional flows. Physica D 149, 248–277 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hauser, H., Hagen, H., Theisel, H.: Topology Based Methods in Visualization. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hege, H.-C., Polthier, K., Scheuermann, G.: Topology Based Methods in Visualization II. Springer, Berlin (2009)CrossRefGoogle Scholar
  11. 11.
    Helman, J.L., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput. Graph. Appl. 11(3), 36–46 (1991)CrossRefGoogle Scholar
  12. 12.
    Kolmogorov, A.N.: On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSR 98, 469 (1954)MathSciNetGoogle Scholar
  13. 13.
    Levnajic, Z., Mezic, I.: Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partitions and invariant sets. Chaos 20(3), 033114 (2010)MathSciNetGoogle Scholar
  14. 14.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer, New York (1992)zbMATHGoogle Scholar
  15. 15.
    Löffelmann, H., Gröller, E.: Enhancing the visualization of characteristic structures in dynamical systems. In: Visualization in Scientific Computing ’98, pp. 59–68 (1998)Google Scholar
  16. 16.
    Löffelmann, H., Kucera, T., Gröller, E.: Visualizing poincaré maps together with the underlying flow. In: Hege, H.-C., Polthier, K. (eds.) Mathematical Visualization: Proceedings of the International Workshop on Visualization and Mathematics ’97, pp. 315–328. Springer, Berlin (1997)Google Scholar
  17. 17.
    Löffelmann, H., Doleisch, H., Gröller, E.: Visualizing dynamical systems near critical points. In: 14th Spring Conference on Computer Graphics, pp. 175–184 (1998)Google Scholar
  18. 18.
    Marsden, J., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001). doi:10.1017/S096249290100006XCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Marsden, J.E., Ratiu, T.: Introduction to mechanics and symmetry. Texts in Applied Mathe-matics, vol. 17. Springer, Berlin (2003)Google Scholar
  20. 20.
    Mathur, M., Haller, G., Peacock, T., Ruppert-Felsot, J., Swinney, H.: Uncovering the lagrangian skeleton of turbulence. Phys. Rev. Lett. 98, 144502 (2007)CrossRefGoogle Scholar
  21. 21.
    Morrison, P.: Magnetic field lines, hamiltonian dynamics, and nontwist systems. Phys. Plasma 7(6), 2279–2289 (2000)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1,1 Kl(1), 1 (1962)Google Scholar
  23. 23.
    Peikert, R., Sadlo, F.: Visualization methods for vortex rings and vortex breakdown bubbles. In: Museth, A.Y.K., Möller, T. (eds.) Proceedings of the 9th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis’07), pp. 211–218, May 2007Google Scholar
  24. 24.
    Peikert, R., Sadlo, F.: Flow topology beyond skeletons: Visualization of features in recirculating flow. In: Hege, H.-C., Polthier, K., Scheuermann, G. (eds.) Topology-Based Methods in Visualization II, pp. 145–160. Springer, Berlin (2008)Google Scholar
  25. 25.
    Prince, P.J., Dormand, J.R.: High order embedded runge-kutta formulae. J. Comput. Appl. Math. 7(1) 67–75 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Sadlo, F., Peikert, R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Visual. Comput. Graph. 13(5), 1456–1463 (2007)CrossRefGoogle Scholar
  27. 27.
    Sadlo, F., Peikert, R.: Visualizing Lagrangian coherent structures and comparison to vector field topology. In: Hege, H.-C., Polthier, K., Scheuermann, G., Farin, G., Hege, H.-C., Hoffman, D., Johnson, C.R., Polthier, K. (eds.) Topology-Based Methods in Visualization II. Mathematics and Visualization, pp. 15–29. Springer, Berlin (2009)CrossRefGoogle Scholar
  28. 28.
    Sadlo, F., Weiskopf, D.: Time-dependent 2-D vector field topology: An approach inspired by Lagrangian coherent structures. Comput. Graph. Forum 29(1), 88–100 (2010)CrossRefGoogle Scholar
  29. 29.
    Sanderson, A., Tricoche, X., Garth, C., Kruger, S., Sovinec, C., Held, E., Breslau, J.: Poster: A geometric approach to visualizing patterns in the poincaré plot of a magnetic field. In: Proc. of IEEE Visualization 06 Conference, 2006Google Scholar
  30. 30.
    Sanderson, A., Cheng, G., Tricoche, X., Pugmire, D., Kruger, S., Breslau, J.: Analysis of recurrent patterns in toroidal magnetic fields. IEEE Trans. Visual. Comput. Graph. 16(6), 1431–1440 (2010)CrossRefGoogle Scholar
  31. 31.
    Scheuermann, G., Tricoche, X.: Topological methods in flow visualization. In: Johnson, C., Hansen, C. (eds.) Visualization Handbook, pp. 341–356. Academic, NY (2004)Google Scholar
  32. 32.
    Soni, B., Thompson, D., Machiraju, R.: Visualizing particle/flow structure interactions in the small bronchial tubes. IEEE Trans. Visual. Comput. Graph. 14(6), 1412–1427 (2008)CrossRefGoogle Scholar
  33. 33.
    Yip, K.M.-K.: KAM: A System for Intelligently Guiding Numerical Experimentation by Computer. MIT, MA (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xavier Tricoche
    • 1
  • Christoph Garth
    • 2
  • Allen Sanderson
    • 3
  • Ken Joy
    • 2
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.University of California DavisDavisUSA
  3. 3.University of UtahSalt Lake CityUSA

Personalised recommendations