Advertisement

Topological Cacti: Visualizing Contour-Based Statistics

  • Gunther H. Weber
  • Peer-Timo Bremer
  • Valerio Pascucci
Chapter
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nesting behavior and topology – often represented in form of a contour tree – have been used extensively for visualization and analysis. However, traditional contour trees only encode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use the segmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well as other co-located functions. We introduce a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of a contour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields of varying dimension and different measures to demonstrate the effectiveness of the approach.

Keywords

Cube Root Spike Length Root Branch Fuel Consumption Rate Piecewise Polynomial Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory), DE-AC52-07NA27344 (Lawrence Livermore National Laboratory) and DE-FC02-06ER25781 (University of Utah) and the use of resources of the National Energy Research Scientific Computing Center (NERSC).

References

  1. 1.
    Bajaj, C., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proc. IEEE Visualization, published in October by IEEE Computer Society Press, pp. 167–175 (1997)Google Scholar
  2. 2.
    Boyell, R.L., Ruston, H.: Hybrid techniques for real-time radar simulation. In: Proc. 1963 Fall Joint Computer Conference, pp. 445–458. IEEE, NY (1963)Google Scholar
  3. 3.
    Bremer, P.T., Weber, G.H., Tierny, J., Pascucci, V., Day, M.S., Bell, J.B.: A topological framework for the interactive exploration of large scale turbulent combustion. In: Proc. 5th IEEE International Conference on e-Science, pp. 247–254. Oxford, UK (2009)Google Scholar
  4. 4.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. Theor. Appl. 24(2), 75–94 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: Proc. IEEE Visualization 2004, published in October by IEEE Computer Society Press, pp. 497–504 (2004)Google Scholar
  6. 6.
    Collins, W.D., Rasch, P.J., Boville, B.A., Hack, J.J, McCaa, J.R., Williamson, D.L., Briegleb, B.P, Bitz, C.M., Lin, S.-J., Zhang, M.: The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Climate 19, 2144–2161 (2006). doi: 10.1175/JCLI3760.1Google Scholar
  7. 7.
    Fujishiro, I., Maeda, Y., Sato, H., Takeshima, Y.: Volumetric data exploration using interval volume. IEEE Trans. Vis. Comp. Graph. 2(2), 144–155 (1996)CrossRefGoogle Scholar
  8. 8.
    Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Software Pract. Ex. 30, 1203–1233 (1999)CrossRefGoogle Scholar
  9. 9.
    Heine, C., Schneider, D., Carr, H., Scheuermann, G.: Drawing Contour Trees in the Plane. IEEE Trans. Vis. Comp. Graph. 17(11), 1599–1611 (2011)CrossRefGoogle Scholar
  10. 10.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graph. (Proc. ACM SIGGRAPH 87) 21(4), 163–169 (1987)Google Scholar
  11. 11.
    Mizuta, S., Suwa, Y., Ono, T., Matsuda, T.: Description of the topological structure of digital images by contour tree and its application. Tech. rep., Institute of Electronics, Information and Communication Engineers (2004)Google Scholar
  12. 12.
    Mizuta, S., Ono, T., Matsuda, T.: Contour nest: A two-dimensional representation for three-dimensional isosurfaces. In: Proc. Volume Graphics, Published July 2006 by the Eurographics Association, Aire-la-Ville, Switzerland, pp. 67–70 (2006)Google Scholar
  13. 13.
    Montani, C., Scateni, R., Scopigno, R.: A modified look-up table for implicit disambiguation of marching cubes. Vis. Comput. 10(6), 353–355 (1994)CrossRefGoogle Scholar
  14. 14.
    Nielson, G.M.: On marching cubes. IEEE Trans. Vis. Comp. Graph. 9(3), 341–351 (2003)CrossRefGoogle Scholar
  15. 15.
    Pascucci, V., Cole-McLaughlin, K., Scorzelli, G.: The Toporrery: Computation and Presentation of Multi-Resolution Topology, pp. 19–40. Springer, Berlin (2009)Google Scholar
  16. 16.
    Reeb, G.: Sur les points singuliers d’une forme de pfaff complètement intégrable ou d’une fonction numérique. Comptes Rendus de l’Acadèmie des Sciences de Paris 222, 847–849 (1946)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Scheidegger, C.E., Schreiner, J.M., Duffy, B., Carr, H., Silva, C.T.: Revisiting histograms and isosurface statistics. IEEE Trans. Vis. Comp. Graph. 14, 1659–1666 (2008)CrossRefGoogle Scholar
  18. 18.
    Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on morse theory. IEEE Comput. Graph. Appl. 11(5), 66–78 (1991)CrossRefGoogle Scholar
  19. 19.
    Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its application to transfer function design. Graph. Model. 66(1), 24–49 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Takahashi, S., Nielson, G.M., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization using adaptive tetrahedralization. In: Proc. Geometric Modeling and Processing, Published September 2007 by IEEE Computer Society Press, pp. 227–236 (2004)Google Scholar
  21. 21.
    Takahashi, S., Takeshima, Y., Fujishiro, I., Nielson, G.M.: Emphasizing isosurface embeddings in direct volume rendering. In: Scientific Visualization: The Visual Extraction of Knowledge from Data, pp. 185–206. Springer, Berlin (2005)Google Scholar
  22. 22.
    Weber, G.H., Bremer, P.T., Pascucci, V.: Topological landscapes: A terrain metaphor for scientific data. IEEE Trans. Vis. Comp. Graph. (Proc. Visualization 2007) 13(6), 1416–1423 (2007)Google Scholar
  23. 23.
    Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume rendering. IEEE Trans. Vis. Comp. Graph. 13(2), 330–341 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gunther H. Weber
    • 1
  • Peer-Timo Bremer
    • 2
  • Valerio Pascucci
    • 3
  1. 1.Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Center of Applied Scientific ComputingLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations