Advertisement

Computational Discrete Morse Theory for Divergence-Free 2D Vector Fields

  • Jan Reininghaus
  • Ingrid Hotz
Chapter
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We present a simple approach to the topological analysis of divergence-free 2D vector fields using discrete Morse theory. We make use of the fact that the point-wise perpendicular vector field can be interpreted as the gradient of the stream function. The topology of the divergence-free vector field is thereby encoded in the topology of a gradient vector field. We can therefore apply a formulation of computational discrete Morse theory for gradient vector fields. The inherent consistence and robustness of the resulting algorithm is demonstrated on synthetic data and an example from computational fluid dynamics.

Keywords

Stream Function Gradient Vector Morse Theory Importance Measure Morse Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank David Günther, Jens Kasten, and Tino Weinkauf for many fruitful discussions on this topic. This work was funded by the DFG Emmy-Noether research programm. All visualizations in this paper have been created using AMIRA – a system for advanced visual data analysis (see http://amira.zib.de/).

References

  1. 1.
    Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. arXiv:1001.1269v2 (2010)Google Scholar
  2. 2.
    Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1-3), 101–113 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chen, G., Mischaikow, K., Laramee, R., Pilarczyk, P., Zhang, E.: Vector field editing and periodic orbit extraction using Morse decomposition. IEEE Trans. Visual. Comput. Graph. 13, 769–785 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, G., Mischaikow, K., Laramee, R.S., Zhang, E.: Efficient morse decomposition of vector fields. IEEE Trans. Visual. Comput. Graph. 14(4), 848–862 (2008)CrossRefGoogle Scholar
  5. 5.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Forman, R.: Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift 228(4), 629–681 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gyulassy, A.: Combinatorial Construction of Morse-Smale Complexes for Data Analysis and Visualization. PhD thesis, University of California, Davis (2008)Google Scholar
  9. 9.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge, U.K. (2002)zbMATHGoogle Scholar
  10. 10.
    Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Comput. 22(8), 27–36 (1989)CrossRefGoogle Scholar
  11. 11.
    Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. Computer 22(8), 27–36 (1989)CrossRefGoogle Scholar
  12. 12.
    Helmholtz, H.: Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55 (1858)CrossRefzbMATHGoogle Scholar
  13. 13.
    King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Klein, T., Ertl, T.: Scale-space tracking of critical points in 3d vector fields. In: Helwig Hauser, H.H., Theisel, H. (eds.) Topology-based Methods in Visualization, Mathematics and Visualization, pp. 35–49. Springer, Berlin (2007)CrossRefGoogle Scholar
  15. 15.
    Laramee, R.S., Hauser, H., Zhao, L., Post, F.H.: Topology-based flow visualization, the state of the art. In: Helwig Hauser, H.H., Theisel, H. (eds.) Topology-based Methods in Visualization, Mathematics and Visualization, pp. 1–19. Springer, Berlin (2007)CrossRefGoogle Scholar
  16. 16.
    Lewiner, T.: Geometric discrete Morse complexes. PhD thesis, Department of Mathematics, PUC-Rio, 2005. Advised by Hélio Lopes and Geovan Tavares.Google Scholar
  17. 17.
    Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)zbMATHGoogle Scholar
  18. 18.
    Noack, B.R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P., Tadmor, G.: A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilibr. Thermodyn. 33(2), 103–148 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Panton, R.: Incompressible Flow. Wiley, New York (1984)zbMATHGoogle Scholar
  20. 20.
    Petronetto, F., Paiva, A., Lage, M., Tavares, G., Lopes, H., Lewiner, T.: Meshless Helmholtz-Hodge decomposition. Trans. Visual. Comput. Graph. 16(2), 338–342 (2010)CrossRefGoogle Scholar
  21. 21.
    Polthier, K., Preuß, E.: Identifying vector field singularities using a discrete Hodge decomposition. pp. 112–134. Springer, Berlin (2002)Google Scholar
  22. 22.
    Reininghaus, J., Günther, D., Hotz, I., Prohaska, S., Hege, H.-C.: TADD: A computational framework for data analysis using discrete Morse theory. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software – ICMS 2010, volume 6327 of Lecture Notes in Computer Science, pp. 198–208. Springer, Berlin (2010)CrossRefGoogle Scholar
  23. 23.
    Reininghaus, J., Hotz, I.: Combinatorial 2d vector field topology extraction and simplification. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization, Mathematics and Visualization, pp. 103–114. Springer, Berlin (2011)CrossRefGoogle Scholar
  24. 24.
    Reininghaus, J., Löwen, C., Hotz, I.: Fast combinatorial vector field topology. IEEE Trans. Visual. Comput. Graph. 17 1433–1443 (2011)CrossRefGoogle Scholar
  25. 25.
    Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Learn. 33(8), 1646–1658 (2011)CrossRefGoogle Scholar
  26. 26.
    Shonkwiler, C.: Poincaré duality angles for Riemannian manifolds with boundary. Technical Report arXiv:0909.1967, Sep 2009. Comments: 51 pages, 6 figures.Google Scholar
  27. 27.
    Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. In: ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH, volume 22 (2003)Google Scholar
  28. 28.
    Tricoche, X., Scheuermann, G., Hagen, H.: Continuous topology simplification of planar vector fields. In: VIS ’01: Proceedings of the conference on Visualization ’01, pp. 159–166. IEEE Computer Society, Washington, DC, USA (2001)Google Scholar
  29. 29.
    Tricoche, X., Scheuermann, G., Hagen, H., Clauss, S.: Vector and tensor field topology simplification on irregular grids. In: Ebert, D., Favre, J.M., Peikert, R. (eds.) VisSym ’01: Proceedings of the symposium on Data Visualization 2001, pp. 107–116. Springer, Wien, Austria, May 28–30 (2001)Google Scholar
  30. 30.
    Weinkauf, T.: Extraction of Topological Structures in 2D and 3D Vector Fields. PhD thesis, University Magdeburg (2008)Google Scholar
  31. 31.
    Weinkauf, T., Theisel, H., Shi, K., Hege, H.-C., Seidel, H.-P.: Extracting higher order critical points and topological simplification of 3D vector fields. In: Proceedings IEEE Visualization 2005, pp. 559–566. Minneapolis, U.S.A., October 2005Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations