Rule-Based Analysis of MMPI Data Using the Copernicus System

  • J. Gomuła
  • W. Paja
  • K. Pancerz
  • J. Szkoła
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 99)


Our research concerns psychometric data coming from the Minnesota Multiphasic Personality Inventory (MMPI) test. MMPI is used to count the personality-psychometric dimensions which help specialists in diagnosis of mental diseases. In this paper, we present a part of the Copernicus system – the tool for computer-aided diagnosis of mental diseases based on personality inventories. This part is devoted to the rule-based analysis of the MMPI data expressed in the form of the so-called profiles. The paper characterizes the knowledge base embodied in Copernicus which can be used for the rule-based analysis of the patients’ MMPI data as well as the functionality of the designed tool.


Classification Rule Minnesota Multiphasic Personality Inventory Pattern Vector Diagnostic Rule Decision Tree Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bazan et al. 2000]
    Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)Google Scholar
  2. [Bazan and Szczuka 2005]
    Bazan, J.G., Szczuka, M.S.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III, pp. 37–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. [Cios et al. 2007]
    Cios, K., Pedrycz, W., Swiniarski, R.W., Kurgan, L.A.: Data mining. A knowledge discovery approach. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. [Dahlstrom et al. 1986]
    Dahlstrom, W., Welsh, G., Dahlstrom, L.: An MMPI handbook, vol. 1-2. University of Minnesota Press, Minneapolis (1986)Google Scholar
  5. [Grzymala-Busse 1997]
    Grzymala-Busse, J.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)zbMATHGoogle Scholar
  6. [Hippe 1997]
    Hippe, Z.S.: Machine learning – a promising strategy for business information processing? In: Abramowicz, W. (ed.) Business Information Systems, Academy of Economics Editorial Office, Poznan, pp. 603–622 (1997)Google Scholar
  7. [Knap 2009]
    Knap, M.: Research on new algorithms for decision trees generation. Ph. D. Thesis, AGH University of Science and Technology, Krakow (2009) (in Polish)Google Scholar
  8. [Paja and Hippe 2005]
    Paja, W., Hippe, Z.S.: Feasibility studies of quality of knowledge mined from multiple secondary sources. I. Implementation of generic operations. In: Klopotek, M., Wierzchon, S., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, pp. 461–465. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. [Pawlak 1991]
    Pawlak, Z.: Rough Sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHCrossRefGoogle Scholar
  10. [Witten and Frank 2005]
    Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Gomuła
    • 1
    • 2
  • W. Paja
    • 3
  • K. Pancerz
    • 3
  • J. Szkoła
    • 3
  1. 1.The Andropause Institute, Medan FoundationWarsawPoland
  2. 2.Cardinal Stefan Wyszyński University in WarsawPoland
  3. 3.Institute of Biomedical InformaticsUniversity of Information Technology and Management in RzeszówPoland

Personalised recommendations