Skip to main content

Generic Face Invariant Model for Face Detection

  • Conference paper
Image Processing and Communications Challenges 3

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 102))

Summary

In this paper we present a model of face class appearance based on learning a relation between features and a face invariant. We have developed a face invariant model for accurate face localization in natural images that presents face pose changes. A probabilistic model capture a relationship between features appearance and invariant geometry is then used to infer a face instance in new image. We use local features which the performances of appearance distinctiveness are sufficient to localize face. An EM classification is applied to determine exactly the face appearance features. Then, invariants parameters are predicted and hierarchical clustering method achieve invariant geometric localization, where clustering deep depends on the aggregate value considered as a factor of precision to construct clusters of invariants. The appearance probabilities of features are computed to select the best cluster and thus to localize face in image. We evaluate our generic invariant by testing it in face detection experiments on PIE, FERET and CMU-Profiles databases. The experimental results show that using face invariant gives a localization rate of 89.3% and results in high accuracy face localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR 2001(2001)

    Google Scholar 

  3. Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. IJCV 60(1), 63–86 (2004)

    Article  Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. PAMI 26(11), 1475–1490 (2004)

    Article  Google Scholar 

  6. Yu, G., Morel, J.M.: A Fully Affine Invariant Image Comparison Method. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei (2009)

    Google Scholar 

  7. Fei-Fei, L., Fergus, R., Perona, P.: A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories. In: ICCV 2003, Nice, France, pp. 1134–1141 (2003)

    Google Scholar 

  8. Bart, E., Byvatov, E., Ullman, S.: View-invariant recognition using corresponding object fragments. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 152–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Pope, A.R., Lowe, D.G.: Probabilistic Models of Appearance for 3-D Object Recognition. IJCV 40(2), 149–167 (2000)

    Article  MATH  Google Scholar 

  10. Toews, M., Arbel, T.: Detection over Viewpoint via the Object Class Invariant. In: Proc. Int’l Conf. Pattern Recognition, vol. 1, pp. 765–768 (2006)

    Google Scholar 

  11. Burns, J., Weiss, R., Riseman, E.: View variation of point set and line-segment features. PAMI 15(1), 51–68 (1993)

    Article  Google Scholar 

  12. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: CVPR 2003, Madison, Wisconsin, pp. 264–271 (2003)

    Google Scholar 

  14. CMU Face Group. Frontal and profile face databases (2009), http://vasc.ri.cmu.edu/idb/html/face/

  15. Color FERET Face Database (2009), http://www.itl.nist.gov/iad/humanid/colorferet

  16. Kadir, T., Brady, M.: Saliency, scale and image description. IJCV 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  17. Dorko, G., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: ICCV 2003, pp. 634–640 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taffar, M., Benmohammed, M. (2011). Generic Face Invariant Model for Face Detection. In: ChoraÅ›, R.S. (eds) Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23154-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23154-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23153-7

  • Online ISBN: 978-3-642-23154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics