Advertisement

The Improvement of Metallographic Images

  • Rusyn Bogdan
  • Lutsyk Oleksiy
  • Pokhmurskyy Andriy
  • Lampke Thomas
  • Nickel Daniela
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 102)

Summary

In this paper the problem of metallographic image processing is considered. It is developed a new approach to filtering a multiplicative noise (stria) on metallographic images. This approach is based on the spectral analysis of images and finding the spectral regions that carry information about stria. Also it is proposed a new approach to eliminate the deformation lines of the material on the metallographic images. This approach consists of deformation line localization algorithm and smoothing filtering procedure of localized regions.

Keywords

Slip Line Noisy Image Multiplicative Noise Stainless Steel Sample Binarization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recognition 39(3), 317–327 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Dobson, A.J.: An introduction to generalized linear models. Chapman and Hall, Boca Raton (1990)zbMATHGoogle Scholar
  3. 3.
    Hand, D.J.: Discrimination and classification. John Wiley, New York (1981)zbMATHGoogle Scholar
  4. 4.
    Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate analysis. Probability and Mathematical Statistics. Academic Press, London (1995)Google Scholar
  5. 5.
    Pokhmurskyy, A., Rusyn, B., Lusyk, O., Lampke, T.: Methode zur automatischen Eliminierung von Präparationsdefekten an korrodierten Oberflächen bei metallografischer Bildanalyse. Werkstoffe und Werkstofftechnische Anwendungen - Band 037, pp. 325–329 (2010)Google Scholar
  6. 6.
    Geman, S.: Stochastic Relaxation, Gibbs Distribuition and the Bayesian Restoration of Images. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 721–741 (1984)zbMATHCrossRefGoogle Scholar
  7. 7.
    Rivas, D., Caleyo, F., Valor, A., Hallen, J.M.: Extreme value analysis applied to pitting corrosion experiments in low carbon steel: Comparison of block maxima and peak over threshold approaches. Corrosion Science 50, 3193–3204 (2008)CrossRefGoogle Scholar
  8. 8.
    Laycock, N., Hodges, S., Krouse, D., Keen, D., Laycock, P.: Pitting of carbon steel heat exchanger tubes in industrial cooling water systems. Journal of Corrosion Science and Engineering 6, 24 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rusyn Bogdan
    • 1
  • Lutsyk Oleksiy
    • 2
  • Pokhmurskyy Andriy
    • 2
  • Lampke Thomas
    • 3
  • Nickel Daniela
    • 3
  1. 1.Kazimierz Pułaski Technical University of RadomPoland
  2. 2.Karpenko Physical-Mechanical Institute ofUkraine
  3. 3.Chemnitz University of TechnologyGermany

Personalised recommendations