Skip to main content

Application of Quaternion Scale Space Approach for Motion Processing

  • Conference paper
Book cover Image Processing and Communications Challenges 3

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 102))

Summary

Scale space approach turned out to be a powerful framework for image processing purposes. In this paper we introduce proposal of a scale space concept generalized for datasets of quaternions e.g trajectories representing motion capture data. We introduce equivalents of non-linear and anisotropic simplification operators which exhibit a completely new set of properties. Three groups of applications are considered: trajectory smoothing, meaningful features detection and parameterized signal synthesis. We present a theoretical analysis and the results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. on Communications 31(4), 532–540 (1983)

    Article  Google Scholar 

  2. Hsieh, C.C.: Motion smoothing using wavelets. J. Intell. Robotics Syst. 35, 157–169 (2002)

    Article  MATH  Google Scholar 

  3. Jablonski, B.: Anisotropic filtering of multidimensional rotational trajectories as a generalization of 2d diffusion process. Multidimensional Syst. Signal Process. 19, 379–399 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jabłoński, B., Kulbacki, M.: Nonlinear multiscale analysis of motion trajectories. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 122–130. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Koenderink, J.: The structure of images. Bio. Cybern. 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, J., Shin, S.Y.: Motion fairing. In: Proceedings of the Computer Animation, CA 1996, pp. 136–143. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  7. Lee, J., Shin, S.Y.: A coordinate-invariant approach to multiresolution motion analysis. Graphical Models 63(2), 87–105 (2001)

    Article  MATH  Google Scholar 

  8. Lee, J., Shin, S.Y.: General construction of time-domain filters for orientation data. IEEE Trans. on Visualization and Computer Graphics 8, 119–128 (2002)

    Article  Google Scholar 

  9. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Dordrecht (1994)

    Google Scholar 

  10. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vision 30, 79–116 (1998)

    Article  Google Scholar 

  11. Lou, H., Chai, J.: Example-based human motion denoising. IEEE Trans. on Visualization and Computer Graphics 16(5), 870–879 (2010)

    Article  Google Scholar 

  12. Maver, J.: Self-similarity and points of interest. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(7), 1211–1226 (2010)

    Article  Google Scholar 

  13. Mishra, A., Wong, A., Clausi, D.A., Fieguth, P.W.: Quasi-random nonlinear scale space. Pattern Recogn. Lett. 31, 1850–1859 (2010)

    Article  Google Scholar 

  14. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  15. Romeny, B.M.T.H.: Introduction to scale-space theory: Multiscale geometric image analysis. In: First Intern. Conf. on Scale-Space theory, Tech. rep. (1996)

    Google Scholar 

  16. Vanhamel, I., Mihai, C., Sahli, H., Katartzis, A., Pratikakis, I.: Scale selection for compact scale-space representation of ăvector-valued images. Int. J. Comput. Vision 84, 194–204 (2009)

    Article  Google Scholar 

  17. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag (1998)

    Google Scholar 

  18. Witkin, A.P.: Scale-space filtering. In: Proc. of the 8th Intern. Joint Conference on Artificial intelligence, San Francisco, USA, vol. 2, pp. 1019–1022 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jabłoński, B. (2011). Application of Quaternion Scale Space Approach for Motion Processing. In: Choraś, R.S. (eds) Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23154-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23154-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23153-7

  • Online ISBN: 978-3-642-23154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics