Application of Quaternion Scale Space Approach for Motion Processing

  • Bartosz Jabłoński
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 102)

Summary

Scale space approach turned out to be a powerful framework for image processing purposes. In this paper we introduce proposal of a scale space concept generalized for datasets of quaternions e.g trajectories representing motion capture data. We introduce equivalents of non-linear and anisotropic simplification operators which exhibit a completely new set of properties. Three groups of applications are considered: trajectory smoothing, meaningful features detection and parameterized signal synthesis. We present a theoretical analysis and the results of numerical experiments.

Keywords

Scale Space Motion Processing Motion Capture Data Laplacian Pyramid Meaningful Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. on Communications 31(4), 532–540 (1983)CrossRefGoogle Scholar
  2. 2.
    Hsieh, C.C.: Motion smoothing using wavelets. J. Intell. Robotics Syst. 35, 157–169 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Jablonski, B.: Anisotropic filtering of multidimensional rotational trajectories as a generalization of 2d diffusion process. Multidimensional Syst. Signal Process. 19, 379–399 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Jabłoński, B., Kulbacki, M.: Nonlinear multiscale analysis of motion trajectories. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 122–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Koenderink, J.: The structure of images. Bio. Cybern. 50, 363–370 (1984)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Lee, J., Shin, S.Y.: Motion fairing. In: Proceedings of the Computer Animation, CA 1996, pp. 136–143. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  7. 7.
    Lee, J., Shin, S.Y.: A coordinate-invariant approach to multiresolution motion analysis. Graphical Models 63(2), 87–105 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Lee, J., Shin, S.Y.: General construction of time-domain filters for orientation data. IEEE Trans. on Visualization and Computer Graphics 8, 119–128 (2002)CrossRefGoogle Scholar
  9. 9.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Dordrecht (1994)Google Scholar
  10. 10.
    Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vision 30, 79–116 (1998)CrossRefGoogle Scholar
  11. 11.
    Lou, H., Chai, J.: Example-based human motion denoising. IEEE Trans. on Visualization and Computer Graphics 16(5), 870–879 (2010)CrossRefGoogle Scholar
  12. 12.
    Maver, J.: Self-similarity and points of interest. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(7), 1211–1226 (2010)CrossRefGoogle Scholar
  13. 13.
    Mishra, A., Wong, A., Clausi, D.A., Fieguth, P.W.: Quasi-random nonlinear scale space. Pattern Recogn. Lett. 31, 1850–1859 (2010)CrossRefGoogle Scholar
  14. 14.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  15. 15.
    Romeny, B.M.T.H.: Introduction to scale-space theory: Multiscale geometric image analysis. In: First Intern. Conf. on Scale-Space theory, Tech. rep. (1996)Google Scholar
  16. 16.
    Vanhamel, I., Mihai, C., Sahli, H., Katartzis, A., Pratikakis, I.: Scale selection for compact scale-space representation of ăvector-valued images. Int. J. Comput. Vision 84, 194–204 (2009)CrossRefGoogle Scholar
  17. 17.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag (1998)Google Scholar
  18. 18.
    Witkin, A.P.: Scale-space filtering. In: Proc. of the 8th Intern. Joint Conference on Artificial intelligence, San Francisco, USA, vol. 2, pp. 1019–1022 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bartosz Jabłoński
    • 1
  1. 1.Institute of Computer Engineering, Control and RoboticsWroclaw University of TechnologyWroclawPoland

Personalised recommendations