Analysis and Mining of Online Communities of Internet Forum Users

  • Mikołaj Morzy
Part of the Intelligent Systems Reference Library book series (ISRL, volume 25)


In this chapter we provide an overview of Internet forums, their architecture, and characteristics of social-driven data generated by the online community of Internet forum users. We discuss issues involved in Internet forum data acquisition and processing, and we outline some of the challenges that need to be addressed. Then, we present a framework for analysis and mining of Internet forum data for social role discovery. Our framework consists of a multi-tier model, with statistical, index and network analysis tiers serving as knowledge discovery tools at different levels of analysis. We also show how using methods of social network analysis, in particular, the analysis of egocentric graphs of Internet forum users, may help in understanding social role attribution between users.


Social Network Social Role Natural Language Processing Social Network Analysis Online Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  2. 2.
    Anderson, C.: The long tail. Wired (October 2004)Google Scholar
  3. 3.
    Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More. Hyperion (2006)Google Scholar
  4. 4.
    Alm, C.O., Roth, D., Sproat, R.: Emotions from Text: Machine Learning for Text-based Emotion Prediction. In: Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 579–586. Association for Computational Linguistics, Vancouver (2005)CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco (2002)Google Scholar
  6. 6.
    Barabasi, A.L., Bonabeau, E.: Scale-free networks. Scientific American (May 2003)Google Scholar
  7. 7.
    Brandes, U., Erlebach, T.: Network Analysis, Methodological Foundations. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  8. 8.
    Breslin, J.G., Kass, R., Bojars, U.: The Boardscape: Creating a Super Social Network of Message Boards. In: International Conference on Weblogs and Social Media ICWSM 2007, Boulder, Colorado, USA (2007)Google Scholar
  9. 9.
    Burkharter, B., Smith, M.: Inhabitant’s Uses and Reactions to Usenet Social Accounting Data. In: Snowdon, D., Churchill, E.F., Frecon, E. (eds.) Inhabited Information Spaces, pp. 291–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Internet world stats,
  11. 11.
    Carrington, P.J., Scott, J., Wasserman, S.: Models and Methods in Social Network Analysis. Cambridge University Press, Cambridge (2005)Google Scholar
  12. 12.
    Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  13. 13.
    Fisher, D., Smith, M., Welser, H.T.: You Are Who You Talk To: Detecting Roles in Usenet Newsgroups. In: 39th Annual Hawaii International Conference on System Sciences. IEEE Computer Society, Kauai (2006)Google Scholar
  14. 14.
    Golder, S.A.: A Typology of Social Roles in Usenet. A thesis submitted to the Department of Linguistics. Harvard University, Cambridge (2003)Google Scholar
  15. 15.
    Gomez, V., Kaltenbrunner, A., Lopez, V.: Statistical analysis of the social network and discussion threads in Slashdot. In: 17th International Conference on World Wide Web (WWW 2008). ACM Press, Beijing (2008)Google Scholar
  16. 16.
    Hanneman, R., Riddle, M.: Introduction to social network methods. University of California, Riverside (2005)Google Scholar
  17. 17.
    Manning, C.D., Schuetze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  18. 18.
    Marcoccia, M.: On-line Polylogues: Conversation Structure and Participation Framework in Internet Newsgroups. Journal of Pragmatics 36(1), 115–145 (2004)CrossRefGoogle Scholar
  19. 19.
    Merton, R.K.: Social Theory and Social Structure. Free Press, New York (1968)Google Scholar
  20. 20.
    O’Reilly, T.: O’reilly radar: Web 2.0 compact definition: Trying again (April 2006),
  21. 21.
    Parsons, T.: The Social System. Routledge & Kegan Paul Ltd., London (1951)Google Scholar
  22. 22.
    Shi, X., Zhu, J., Cai, R., Zhang, L.: User grouping behavior in online forums. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009). ACM Press, Paris (2009)Google Scholar
  23. 23.
    Skvoretz, J., Faust, K.: Relations, Species, and Network Structure. Journal of Social Structure 3(3) (2002)Google Scholar
  24. 24.
    Turner, T.C., Smith, M., Fisher, D., Welser, H.T.: Picturing Usenet: Mapping Computer-Mediated Collective Action. Journal of Computer-Mediated Communication 10(4) (2005)Google Scholar
  25. 25.
    Viegas, F.B., Smith, M.: Newsgroup Crowds and AuthorLines: Visualizing the Activity of Individuals in Conversational Cyberspaces. In: 37th Annual Hawaii International Conference on System Sciences (HICSS 2004) - Track 4. IEEE Computer Society, Kauai (2004)Google Scholar
  26. 26.
    Weiss, S., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining: Predictive Methods for Analyzing Unstructured Information. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Welser, H.T., Gleave, E., Fisher, D., Smith, M.: Visualizing the Signatures of Social Roles in Online Discussion Groups. Journal of Social Structure 8(2) (2007)Google Scholar
  28. 28.
    Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge University Press, Cambridge (1999)Google Scholar
  29. 29.
    Wenger, E., Snyder, M.: Communities of Practice: The Organizational Frontier. Harvard Business Review, 139–145 (2000)Google Scholar
  30. 30.
    Wenger, E., McDermott, R., Snyder, W.S.: Cultivating Communities of Practice: A Guide to Managing Knowledge. Harvard Business School Press, Boston (2002)Google Scholar
  31. 31.
    White, H.C., Boorman, S.A., Breiger, R.L.: Social-Structure from Multiple Networks: 1. Blockmodels of Roles and Positions. American Journal of Sociology 81(4), 730–780 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Computing SciencePoznan University of TechnologyPoznanPoland

Personalised recommendations