Learning of Facial Gestures Using SVMs

  • Jacky Baltes
  • Stela Seo
  • Chi Tai Cheng
  • M. C. Lau
  • John Anderson
Part of the Communications in Computer and Information Science book series (CCIS, volume 212)

Abstract

This paper describes the implementation of a fast and accurate gesture recognition system. Image sequences are used to train a standard SVM to recognize Yes, No, and Neutral gestures from different users. We show that our system is able to detect facial gestures with more than 80% accuracy from even small input images.

Keywords

Facial Recognition SVM Machine Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. Computer, 1–30 (2001)Google Scholar
  2. 2.
    Hagg, J., Rkl, B., Akan, B., Asplund, L.: Gesture recognition using evolution strategy neural network, pp. 245–248. IEEE, Los Alamitos (2008)Google Scholar
  3. 3.
    Hasanuzzaman, M., Ampornaramveth, V., Bhuiyan, M.A., Shirai, Y., Ueno, H.: Real-time vision-based gesture recognition for human robot interaction. In: 2004 IEEE International Conference on Robotics and Biomimetics, pp. 413–418 (2004)Google Scholar
  4. 4.
    Lee, S.-W.: Automatic gesture recognition for intelligent human-robot interaction. In: 7th International Conference on Automatic Face and Gesture Recognition FGR 2006, pp. 645–650 (2006)Google Scholar
  5. 5.
    Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews 37(3), 311–324 (2007)CrossRefGoogle Scholar
  6. 6.
    Oshita, M., Matsunaga, T.: Automatic learning of gesture recognition model using som and svm. Advances in Visual Computing, 751–759 (2010)Google Scholar
  7. 7.
    Valibeik, S., Yang, G.-Z.: Segmentation and Tracking for Vision Based Human Robot Interaction. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  8. 8.
    Vapnik, V.N.: An overview of statistical learning theory. IEEE Transactions on Neural Networks 10(5), 988–999 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jacky Baltes
    • 1
  • Stela Seo
    • 1
  • Chi Tai Cheng
    • 1
  • M. C. Lau
    • 1
  • John Anderson
    • 1
  1. 1.Autonomous Agent LabUniversity of ManitobaWinnipegCanada

Personalised recommendations