Lower Bounds for Interpolating Polynomials for Square Roots of the Elliptic Curve Discrete Logarithm

  • Gerasimos C. Meletiou
  • Yannis C. Stamatiou
  • Apostolos Tsiakalos
Part of the Communications in Computer and Information Science book series (CCIS, volume 200)


In this paper we derive lower bounds for the degree of polynomials that approximate the square root of the discrete logarithm for Elliptic Curves with orders of various specific types. These bounds can serve as evidence for the difficulty in the computation of the square root of discrete logarithms for such elliptic curves, with properly chosen parameters that result in the curve having order of any of types studied in this paper. The techniques are potentially applicable to elliptic curves of order of any specific, allowable (by Hasse’s bounds), order type that is of interest for the application in hand.


Elliptic Curve Elliptic Curf Discrete Logarithm Discrete Logarithm Problem Quadratic Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Mathematics of Computation 61, 29–67 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baier, H.: Efficient Algorithms for Generating Elliptic Curves over Finite Fields Suitable for Use in Cryptography, PhD Thesis, Dept. of Computer Science, Technical Univ. of Darmstadt (May 2002)Google Scholar
  3. 3.
    Buchmann, J., Baier, H.: Efficient construction of cryptographically strong elliptic curves. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 191–202. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups (Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Berlin (1993)zbMATHGoogle Scholar
  7. 7.
    Cornacchia, G.: Su di un metodo per la risoluzione in numeri interi dell’ equazione \(\sum_{h=0}^{n} C_{h}x^{n-h}y^h = P\). Giornale di Matematiche di Battaglini 46, 33–90 (1908)Google Scholar
  8. 8.
    Cox, D.A.: Primes of the form \(x\sp 2 + ny\sp 2\). John Wiley and Sons, New York (1989)zbMATHGoogle Scholar
  9. 9.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    IEEE P1363/D13, Standard Specifications for Public-Key Cryptography (1999),
  11. 11.
    Konoma, C., Mambo, M., Shizuya, H.: The Computational Difficulty of Solving Cryptographic Primitive Problems Related to the Discrete Logarithm Problem. IEICE Transactions 88-A(1), 81–88 (2005)CrossRefGoogle Scholar
  12. 12.
    Konstantinou, E., Stamatiou, Y., Zaroliagis, C.: A Software Library for Elliptic Curve Cryptography. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 625–637. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Konstantinou, E., Stamatiou, Y., Zaroliagis, C.: On the Efficient Generation of Elliptic Curves over Prime Fields. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 333–348. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Konstantinou, E., Stamatiou, Y.C., Zaroliagis, C.: On the Construction of Prime Order Elliptic Curves. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 309–322. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Konstantinou, E., Kontogeorgis, A., Stamatiou, Y., Zaroliagis, C.: Generating Prime Order Elliptic Curves: Difficulties and Efficiency Considerations. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 261–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Lange, T., Winterhof, A.: Polynomial Interpolation of the Elliptic Curve and XTR Discrete Logarithm. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 137–143. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Lay, G.J., Zimmer, H.: Constructing Elliptic Curves with Given Group Order over Large Finite Fields. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 250–263. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  18. 18.
    Lenstra Jr., H.: Factoring integers with elliptic curves. Ann. of Math. 2, 649–673 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signatures: A Scalable Solution to Electronic Cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Meletiou, G.C.: Polynomial Interpolation of the k-th Root of the Discrete Logarithm. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 318–323. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Meletiou, G.C., Winterhof, A.: Interpolation of the Double Discrete Logarithm. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130, pp. 1–10. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Savaş, E., Schmidt, T.A., Koç, Ç.K.: Generating Elliptic Curves of Prime Order. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 142–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Shparlinski, I.E.: Number Theoretic Methods in Cryptography: Complexity Lower Bounds. In: Progress in Computer Science and Applied Logic (PCS). Birkhäuser, Basel (1999)Google Scholar
  24. 24.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM 106 (1986)Google Scholar
  25. 25.
    Stewart, I.: Galois Theory, 3rd edn. Chapman & Hall/CRC, Boca Raton, FL (2004)zbMATHGoogle Scholar
  26. 26.
    Stewart, I., Tall, D.: Algebraic Number Theory, 2nd edn. Chapman & Hall, London (1987)zbMATHGoogle Scholar
  27. 27.
    Traoré, J.: Group Signatures and Their Relevance to Privacy-Protecting Off-Line Electronic Cash Systems. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 228–243. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerasimos C. Meletiou
    • 1
  • Yannis C. Stamatiou
    • 2
    • 3
  • Apostolos Tsiakalos
    • 2
  1. 1.A.T.E.I. of EpirusArtaGreece
  2. 2.Department of MathematicsUniversity of IoanninaIoanninaGreece
  3. 3.Research Academic Computer Technology InstituteUniversity of Patras, N. Kazantzaki, RioPatrasGreece

Personalised recommendations