A Detrministic Factorization and Primality Testing Algorithm for Integers of the Form Z Mod 6 = -1

  • Noureldien Abdelrhman Noureldien
  • Mahmud Awadelkariem
  • DeiaEldien M. Ahmed
Part of the Communications in Computer and Information Science book series (CCIS, volume 200)


Prime numbers are known to be in one of two series; P mod 6 = ±1. In this paper, we introduce the concept of Integer Absolute Position in prime series, and we use the concept to develop a structure for composite integer numbers in the prime series P mod 6 = -1.

We use the developed structure to state theorems and to develop a deterministic algorithm that can test simultaneously for primality and prime factors of integers of the form Z mod 6 = -1.

The developed algorithm is compared with some of the well known factorization algorithms. The results show that the developed algorithm performs well when the two factors are close to each other.

Although the current version of the algorithm is of complexity ((N/62) ½ /2), but the facts that, the algorithm has a parallel characteristics and its performance is dependent on a matrix search algorithm, makes the algorithm competent for achieving better performance.


Factorization Primality Testing Prime Series Absolute Position Relative Position 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform. Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brent, R.P.: Some parallel algorithms for integer factorization. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Schoof, R.J.: Quadratic fields and factorization. In: van de Lune, J. (ed.) Studieweek Getaltheorie en Computers, Amsterdam. Math. Centrum, pp. 165–206 (1980)Google Scholar
  4. 4.
    Shanks, D.: Class number, a theory of factorization, and genera. In: Proc. Symp. Pure Math. 20, American Math. Soc., pp. 415–440 (1971)Google Scholar
  5. 5.
    Morrison, M.A., Brillhart, J.: A method of factorization and the factorization of F7. Mathematics of Computation 29, 183–205 (1975)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Pomerance, C.: Analysis and comparison of some integer factoring algorithms. In: Lenstra Jr., H.W., Tijdeman, R. (eds.) Computational Methods in Number Theory, Amsterdam. Math. Centrum Tract, vol. 154, pp. 89–139 (1982)Google Scholar
  7. 7.
    Pollard, J.M.: A Monte Carlo method for factorization. BIT 15, 331–334 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lehman, R.S.: Factoring large integers. Mathematics of Computation 28, 637–646 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Voorhoeve, M.: Factorization. In: van de Lune, J. (ed.) Studieweek Getaltheorie en Computers, Amsterdam. Math. Centrum, pp. 61–68 (1980)Google Scholar
  10. 10.
    Junod, P.: Cryptographic Secure Pseudo-Random Bits Generation: The Blum-Blum-Shub Generator (August 1999),
  11. 11.
    Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. of Math. 126(2), 649–673 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    General number field sieve. From Wikipedia, an online encyclopedia,
  13. 13.
    Wesstein, E.W.: RSA Encryption. From Mathworld, an online encyclopedia,
  14. 14.
    Brent, R.P.: Some integer factorization algorithms using elliptic curves. Australian Computer Science Communications 8, 149–163 (1986)Google Scholar
  15. 15.
    Housley, et al.: RFC 2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Noureldien Abdelrhman Noureldien
    • 1
  • Mahmud Awadelkariem
    • 1
  • DeiaEldien M. Ahmed
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyUniversity of Science and TechnologyOmdurmanSudan

Personalised recommendations