# A Detrministic Factorization and Primality Testing Algorithm for Integers of the Form Z Mod 6 = -1

• Noureldien Abdelrhman Noureldien
• DeiaEldien M. Ahmed
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 200)

## Abstract

Prime numbers are known to be in one of two series; P mod 6 = ±1. In this paper, we introduce the concept of Integer Absolute Position in prime series, and we use the concept to develop a structure for composite integer numbers in the prime series P mod 6 = -1.

We use the developed structure to state theorems and to develop a deterministic algorithm that can test simultaneously for primality and prime factors of integers of the form Z mod 6 = -1.

The developed algorithm is compared with some of the well known factorization algorithms. The results show that the developed algorithm performs well when the two factors are close to each other.

Although the current version of the algorithm is of complexity ((N/62) ½ /2), but the facts that, the algorithm has a parallel characteristics and its performance is dependent on a matrix search algorithm, makes the algorithm competent for achieving better performance.

## Keywords

Factorization Primality Testing Prime Series Absolute Position Relative Position

## References

1. 1.
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform. Theory 22(6), 644–654 (1976)
2. 2.
Brent, R.P.: Some parallel algorithms for integer factorization. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1–22. Springer, Heidelberg (1999)
3. 3.
Schoof, R.J.: Quadratic fields and factorization. In: van de Lune, J. (ed.) Studieweek Getaltheorie en Computers, Amsterdam. Math. Centrum, pp. 165–206 (1980)Google Scholar
4. 4.
Shanks, D.: Class number, a theory of factorization, and genera. In: Proc. Symp. Pure Math. 20, American Math. Soc., pp. 415–440 (1971)Google Scholar
5. 5.
Morrison, M.A., Brillhart, J.: A method of factorization and the factorization of F7. Mathematics of Computation 29, 183–205 (1975)
6. 6.
Pomerance, C.: Analysis and comparison of some integer factoring algorithms. In: Lenstra Jr., H.W., Tijdeman, R. (eds.) Computational Methods in Number Theory, Amsterdam. Math. Centrum Tract, vol. 154, pp. 89–139 (1982)Google Scholar
7. 7.
Pollard, J.M.: A Monte Carlo method for factorization. BIT 15, 331–334 (1975)
8. 8.
Lehman, R.S.: Factoring large integers. Mathematics of Computation 28, 637–646 (1974)
9. 9.
Voorhoeve, M.: Factorization. In: van de Lune, J. (ed.) Studieweek Getaltheorie en Computers, Amsterdam. Math. Centrum, pp. 61–68 (1980)Google Scholar
10. 10.
Junod, P.: Cryptographic Secure Pseudo-Random Bits Generation: The Blum-Blum-Shub Generator (August 1999), http://www.win.tue.nl/~henkvt/boneh-bbs.pdf
11. 11.
Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. of Math. 126(2), 649–673 (1987)
12. 12.
General number field sieve. From Wikipedia, an online encyclopedia, http://en.wikipedia.org/wiki/GNFS
13. 13.
Wesstein, E.W.: RSA Encryption. From Mathworld, an online encyclopedia, http://mathworld.wolfram.com/RSAEncryption.html
14. 14.
Brent, R.P.: Some integer factorization algorithms using elliptic curves. Australian Computer Science Communications 8, 149–163 (1986)Google Scholar
15. 15.
Housley, et al.: RFC 2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile, http://www.faqs.org/rfcs/rfc2459.html

## Authors and Affiliations

• Noureldien Abdelrhman Noureldien
• 1