Advertisement

S-FSB: An Improved Variant of the FSB Hash Family

  • Mohammed Meziani
  • Özgür Dagdelen
  • Pierre-Louis Cayrel
  • Sidi Mohamed El Yousfi Alaoui
Part of the Communications in Computer and Information Science book series (CCIS, volume 200)

Abstract

In 2003, Augot et al. introduced the Fast Syndrome-Based hash family (in short FSB), which follows the generic construction of Merkle-Damgård and is based on the syndrome decoding problem. In 2007, Finiasz et al. proposed an improved version of FSB. In this work, we propose a new efficient hash function, which incorporates the ideas of FSB and the sponge construction introduced by Bertoni et al. Our proposal is up to 30 % faster in practice than FSB. Its security is related on the Regular Syndrome (RSD) Decoding problem, which is proven NP-complete.

Keywords

cryptographic hash functions provable security syndrome decoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Cryptographic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 64–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Barreto, P.S.L.M., Rijmen, V.: Whirlpool. Seventh hash-function of ISO/IEC 10118-3:2004 (2004)Google Scholar
  3. 3.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(2), 384–386 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bernstein, D.J.: Better price-performance ratios for generalized birthday attacks (2007)Google Scholar
  5. 5.
    Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: FSBDay: Implementing wagner’s generalized birthday attack against the SHA-3 candidate FSB (2009)Google Scholar
  6. 6.
    Bernstein, D.J., Lange, T., Peters, C.: Ball-Collision Decoding. Cryptology ePrint Archive, Report 2010/585 (2010), http://eprint.iacr.org/
  7. 7.
    Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Faster 2-regular information-set decoding (2011)Google Scholar
  8. 8.
    Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based hashing. Cryptology ePrint Archive, Report 2011/074 (2011), http://eprint.iacr.org/
  9. 9.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Submission to NIST, Round 2 (2009)Google Scholar
  10. 10.
    Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Brown, D.R.L., Antipa, A., Campagna, M., Struik, R.: Ecoh: the elliptic curve only hash. Submission to NIST (2008)Google Scholar
  12. 12.
    De Cannière, C., Rechberger, C.: Finding sha-1 characteristics: General results and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Contini, S., Lenstra, A.K., Steinfeld, R.: Vsh, an efficient and provable collision-resistant hash function. LNCS, pp. 165–182. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  14. 14.
    Coron, J.-S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash function. Cryptology ePrint Archive, Report 2004/013 (2004), http://eprint.iacr.org/
  15. 15.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash functions. In: Rijmen, V. (ed.) ECRYPT Hash Workshop 2007 (2007)Google Scholar
  17. 17.
    Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-based Cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Peeters, M., Bertoni, G., Daemen, J., Van Assche, G.: Sponge Functions. In: ECRYPT Hash Workshop 2007 (2007)Google Scholar
  19. 19.
    Gaborit, P., Laudaroux, C., Sendrier, N.: Synd: a very fast code-based cipher stream with a security reduction. In: IEEE Conference, ISIT 2007, Nice, France, pp. 186–190 (July 2007)Google Scholar
  20. 20.
    Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal for fft hashing, pp. 54–72 (2008)Google Scholar
  22. 22.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  23. 23.
    National Institute of Standards and Technology (NIST). Secure Hash Standard (October 2008)Google Scholar
  24. 24.
    Saarinen, M.-J.O.: Linearization attacks against syndrome based hashes. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 1–9. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 288. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohammed Meziani
    • 1
  • Özgür Dagdelen
    • 1
  • Pierre-Louis Cayrel
    • 1
  • Sidi Mohamed El Yousfi Alaoui
    • 1
  1. 1.CASED – Center for Advanced Security Research DarmstadtDarmstadtGermany

Personalised recommendations