S-FSB: An Improved Variant of the FSB Hash Family

  • Mohammed Meziani
  • Özgür Dagdelen
  • Pierre-Louis Cayrel
  • Sidi Mohamed El Yousfi Alaoui
Part of the Communications in Computer and Information Science book series (CCIS, volume 200)


In 2003, Augot et al. introduced the Fast Syndrome-Based hash family (in short FSB), which follows the generic construction of Merkle-Damgård and is based on the syndrome decoding problem. In 2007, Finiasz et al. proposed an improved version of FSB. In this work, we propose a new efficient hash function, which incorporates the ideas of FSB and the sponge construction introduced by Bertoni et al. Our proposal is up to 30 % faster in practice than FSB. Its security is related on the Regular Syndrome (RSD) Decoding problem, which is proven NP-complete.


cryptographic hash functions provable security syndrome decoding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Cryptographic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 64–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Barreto, P.S.L.M., Rijmen, V.: Whirlpool. Seventh hash-function of ISO/IEC 10118-3:2004 (2004)Google Scholar
  3. 3.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(2), 384–386 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bernstein, D.J.: Better price-performance ratios for generalized birthday attacks (2007)Google Scholar
  5. 5.
    Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: FSBDay: Implementing wagner’s generalized birthday attack against the SHA-3 candidate FSB (2009)Google Scholar
  6. 6.
    Bernstein, D.J., Lange, T., Peters, C.: Ball-Collision Decoding. Cryptology ePrint Archive, Report 2010/585 (2010),
  7. 7.
    Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Faster 2-regular information-set decoding (2011)Google Scholar
  8. 8.
    Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based hashing. Cryptology ePrint Archive, Report 2011/074 (2011),
  9. 9.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Submission to NIST, Round 2 (2009)Google Scholar
  10. 10.
    Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Brown, D.R.L., Antipa, A., Campagna, M., Struik, R.: Ecoh: the elliptic curve only hash. Submission to NIST (2008)Google Scholar
  12. 12.
    De Cannière, C., Rechberger, C.: Finding sha-1 characteristics: General results and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Contini, S., Lenstra, A.K., Steinfeld, R.: Vsh, an efficient and provable collision-resistant hash function. LNCS, pp. 165–182. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  14. 14.
    Coron, J.-S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash function. Cryptology ePrint Archive, Report 2004/013 (2004),
  15. 15.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash functions. In: Rijmen, V. (ed.) ECRYPT Hash Workshop 2007 (2007)Google Scholar
  17. 17.
    Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-based Cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Peeters, M., Bertoni, G., Daemen, J., Van Assche, G.: Sponge Functions. In: ECRYPT Hash Workshop 2007 (2007)Google Scholar
  19. 19.
    Gaborit, P., Laudaroux, C., Sendrier, N.: Synd: a very fast code-based cipher stream with a security reduction. In: IEEE Conference, ISIT 2007, Nice, France, pp. 186–190 (July 2007)Google Scholar
  20. 20.
    Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal for fft hashing, pp. 54–72 (2008)Google Scholar
  22. 22.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  23. 23.
    National Institute of Standards and Technology (NIST). Secure Hash Standard (October 2008)Google Scholar
  24. 24.
    Saarinen, M.-J.O.: Linearization attacks against syndrome based hashes. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 1–9. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 288. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohammed Meziani
    • 1
  • Özgür Dagdelen
    • 1
  • Pierre-Louis Cayrel
    • 1
  • Sidi Mohamed El Yousfi Alaoui
    • 1
  1. 1.CASED – Center for Advanced Security Research DarmstadtDarmstadtGermany

Personalised recommendations