Advertisement

Towards Algebraic Cryptanalysis of HFE Challenge 2

  • Mohamed Saied Emam Mohamed
  • Jintai Ding
  • Johannes Buchmann
Part of the Communications in Computer and Information Science book series (CCIS, volume 200)

Abstract

In this paper, we present an experimental analysis of HFE Challenge 2 (144 bit) type systems. We generate scaled versions of the full challenge fixing and guessing some unknowns. We use the MXL3 algorithm, an efficient algorithm for computing Gröbner basis, to solve these scaled versions. We review the MXL3 strategy and introduce our experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bard, G.V.: Accelerating cryptanalysis with the Method of Four Russians. Report 251, Cryptology ePrint Archive (2006)Google Scholar
  2. 2.
    Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. Technical Report 2002/044, Cryptology ePrint Archive (2002)Google Scholar
  5. 5.
    Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.-P.: MutantXL. In: Proceedings of the 1st International Conference on Symbolic Computation and Cryptography (SCC 2008), pp. 16–22. LMIB, Beijing (2008)Google Scholar
  6. 6.
    Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An efficient algorithm for computing gröbner bases of zero-dimensional ideals. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Penzhorn, W.: Algebraic attacks on cipher systems. In: Proceedings of 7th AFRICON Conference in Africa (AFRICON), vol. 2, pp. 969–974. IEEE, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohamed Saied Emam Mohamed
    • 1
  • Jintai Ding
    • 2
  • Johannes Buchmann
    • 1
  1. 1.FB InformatikTU DarmstadtDarmstadtGermany
  2. 2.Department of Mathematical SciencesUniversity of Cincinnati, South China University of TechnologyChina

Personalised recommendations