Maximum Entropy Model for Disambiguation of Rich Morphological Tags

  • Mārcis Pinnis
  • Kārlis Goba
Conference paper

DOI: 10.1007/978-3-642-23138-4_2

Part of the Communications in Computer and Information Science book series (CCIS, volume 100)
Cite this paper as:
Pinnis M., Goba K. (2011) Maximum Entropy Model for Disambiguation of Rich Morphological Tags. In: Mahlow C., Piotrowski M. (eds) Systems and Frameworks for Computational Morphology. SFCM 2011. Communications in Computer and Information Science, vol 100. Springer, Berlin, Heidelberg

Abstract

In this work we describe a statistical morphological tagger for Latvian, Lithuanian and Estonian languages based on morphological tag disambiguation. These languages have rich tagsets and very high rates of morphological ambiguity. We model distribution of possible tags with an exponential probabilistic model, which allows to select and use features from surrounding context. Results show significant improvement in error rates over the baseline, the same as the results for Czech. In comparison with the simplified parameter estimation method applied for Czech, we show that maximum entropy weight estimation achieves considerably better results.

Keywords

Tagger maximum entropy inflective languages Estonian Latvian Lithuanian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mārcis Pinnis
    • 1
  • Kārlis Goba
    • 1
  1. 1.TildeRigaLatvia

Personalised recommendations